IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v479y2017icp48-56.html
   My bibliography  Save this article

M-ary suprathreshold stochastic resonance in multilevel threshold systems with signal-dependent noise

Author

Listed:
  • Cheng, Chaojun
  • Zhou, Bingchang
  • Gao, Xiao
  • McDonnell, Mark D.

Abstract

We investigate multilevel threshold systems with signal-dependent noise that transmit a common random input signal. We demonstrate the occurrence of M-ary suprathreshold stochastic resonance caused by the signal-dependent noise, and quantify the information enhancement that results relative to the absence of noise. We also find that in the case of M-ary threshold systems, the values of mutual information and signal-to-quantization-noise ratio are larger than the corresponding values in the case of binary threshold systems. These results are potentially useful for understanding the encoding mechanism of inner-ear hair cells and other biological sensory systems.

Suggested Citation

  • Cheng, Chaojun & Zhou, Bingchang & Gao, Xiao & McDonnell, Mark D., 2017. "M-ary suprathreshold stochastic resonance in multilevel threshold systems with signal-dependent noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 48-56.
  • Handle: RePEc:eee:phsmap:v:479:y:2017:i:c:p:48-56
    DOI: 10.1016/j.physa.2017.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117302297
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Fabing & Chapeau-Blondeau, François & Abbott, Derek, 2009. "Input–output gain of collective response in an uncoupled parallel array of saturating dynamical subsystems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1345-1351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yan & Ren, Yuhao & Duan, Fabing, 2018. "Noise benefits to robust M-estimation of location in dependent observations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 144-152.
    2. Liu, Jian & Wang, Youguo, 2018. "Performance investigation of stochastic resonance in bistable systems with time-delayed feedback and three types of asymmetries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 359-369.
    3. Xie, Tianting & Ji, Yuandong & Yang, Zhongshan & Duan, Fabing & Abbott, Derek, 2023. "Optimal added noise for minimizing distortion in quantizer-array linear estimation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Fabing & Chapeau-Blondeau, François & Abbott, Derek, 2011. "Neural signal transduction aided by noise in multisynaptic excitatory and inhibitory pathways with saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2855-2862.
    2. Xu, Liyan & Duan, Fabing & Abbott, Derek & McDonnell, Mark D., 2016. "Optimal weighted suprathreshold stochastic resonance with multigroup saturating sensors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 348-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:479:y:2017:i:c:p:48-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.