IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v479y2017icp118-127.html
   My bibliography  Save this article

Dependence centrality similarity: Measuring the diversity of profession levels of interests

Author

Listed:
  • Yan, Deng-Cheng
  • Li, Ming
  • Wang, Bing-Hong

Abstract

To understand the relations between developers and software, we study a collaborative coding platform from the perspective of networks, including follower networks, dependence networks and developer-project bipartite networks. Through the analyzing of degree distribution, PageRank and degree-dependent nearest neighbors’ centrality, we find that the degree distributions of all networks have a power-law form except the out-degree distributions of dependence networks. The nearest neighbors’ centrality is negatively correlated with degree for developers but fluctuates around the average for projects. In order to measure the diversity of profession levels of interests, a new index called dependence centrality similarity is proposed and the correlation between dependence centrality similarity and degree is investigated. The result shows an obvious negative correlations between dependence centrality similarity and degree.

Suggested Citation

  • Yan, Deng-Cheng & Li, Ming & Wang, Bing-Hong, 2017. "Dependence centrality similarity: Measuring the diversity of profession levels of interests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 118-127.
  • Handle: RePEc:eee:phsmap:v:479:y:2017:i:c:p:118-127
    DOI: 10.1016/j.physa.2017.02.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117301656
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.02.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Pei-Pei & Kan Chen, & He, Yue & Zhou, Tao & Su, Bei-Bei & Jin, Yingdi & Chang, Hui & Zhou, Yue-Ping & Sun, Li-Cheng & Wang, Bing-Hong & He, Da-Ren, 2006. "Model and empirical study on some collaboration networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 599-616.
    2. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    3. Liao, Hao & Zeng, An & Zhang, Yi-Cheng, 2015. "Predicting missing links via correlation between nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 216-223.
    4. Wang, Yong-Li & Zhou, Tao & Shi, Jian-Jun & Wang, Jian & He, Da-Ren, 2009. "Empirical analysis of dependence between stations in Chinese railway network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2949-2955.
    5. Zhang, Chu-Xu & Zhang, Zi-Ke & Liu, Chuang, 2013. "An evolving model of online bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6100-6106.
    6. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    7. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Jian & Meng, Ying-Ying & Chen, Hsinchun & Huang, Hong-Qiao & Li, Guo-Ying, 2016. "Modeling one-mode projection of bipartite networks by tagging vertex information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 270-279.
    2. Choudhury, Nazim & Faisal, Fahim & Khushi, Matloob, 2020. "Mining Temporal Evolution of Knowledge Graphs and Genealogical Features for Literature-based Discovery Prediction," Journal of Informetrics, Elsevier, vol. 14(3).
    3. Feng, Ai-Xia & Fu, Chun-Hua & Xu, Xiu-Lian & Zhou, Yue-Ping & Chang, Hui & Wang, Jian & He, Da-Ren & Feng, Guo-Lin, 2012. "An extended clique degree distribution and its heterogeneity in cooperation–competition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2454-2462.
    4. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    5. John Bryden & Eric Silverman & Simon T Powers, 2022. "Modelling transitions between egalitarian, dynamic leader and absolutist power structures," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-13, February.
    6. Taalbi, Josef, 2020. "Evolution and structure of technological systems - An innovation output network," Research Policy, Elsevier, vol. 49(8).
    7. Chungmok Lee & Minh Pham & Myong K. Jeong & Dohyun Kim & Dennis K. J. Lin & Wanpracha Art Chavalitwongse, 2015. "A Network Structural Approach to the Link Prediction Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 249-267, May.
    8. Zhang, Xuejun & Pang, Wenbo & Xia, Yongxiang, 2018. "An intermediary probability model for link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 902-912.
    9. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    10. Yin, Likang & Zheng, Haoyang & Bian, Tian & Deng, Yong, 2017. "An evidential link prediction method and link predictability based on Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 699-712.
    11. Jin Wang & Bo Huang & Xuefeng Xia & Zhirong Sun, 2006. "Funneled Landscape Leads to Robustness of Cell Networks: Yeast Cell Cycle," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-10, November.
    12. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    13. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    14. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    15. D’Errico, Marco & Battiston, Stefano & Peltonen, Tuomas & Scheicher, Martin, 2018. "How does risk flow in the credit default swap market?," Journal of Financial Stability, Elsevier, vol. 35(C), pages 53-74.
    16. Sumeet Kumar & Binxuan Huang & Ramon Alfonso Villa Cox & Kathleen M. Carley, 2021. "An anatomical comparison of fake-news and trusted-news sharing pattern on Twitter," Computational and Mathematical Organization Theory, Springer, vol. 27(2), pages 109-133, June.
    17. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves & Lee, Lung-Fei, 2011. "Criminal Networks: Who is the Key Player?," Research Papers in Economics 2011:7, Stockholm University, Department of Economics.
    18. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    19. Agnieszka Rusinowska & Rudolf Berghammer & Harrie de Swart & Michel Grabisch, 2011. "Social networks: Prestige, centrality, and influence (Invited paper)," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00633859, HAL.
    20. Gabrielle Demange, 2018. "Contagion in Financial Networks: A Threat Index," Management Science, INFORMS, vol. 64(2), pages 955-970, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:479:y:2017:i:c:p:118-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.