IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v468y2017icp783-789.html
   My bibliography  Save this article

Measuring information-based energy and temperature of literary texts

Author

Listed:
  • Chang, Mei-Chu
  • Yang, Albert C.-C.
  • Eugene Stanley, H.
  • Peng, C.-K.

Abstract

We apply a statistical method, information-based energy, to quantify informative symbolic sequences. To apply this method to literary texts, it is assumed that different words with different occurrence frequencies are at different energy levels, and that the energy-occurrence frequency distribution obeys a Boltzmann distribution. The temperature within the Boltzmann distribution can be an indicator for the author’s writing capacity as the repertory of thoughts. The relative temperature of a text is obtained by comparing the energy-occurrence frequency distributions of words collected from one text versus from all texts of the same author. Combining the relative temperature with the Shannon entropy as the text complexity, the information-based energy of the text is defined and can be viewed as a quantitative evaluation of an author’s writing performance. We demonstrate the method by analyzing two authors, Shakespeare in English and Jin Yong in Chinese, and find that their well-known works are associated with higher information-based energies. This method can be used to measure the creativity level of a writer’s work in linguistics, and can also quantify symbolic sequences in different systems.

Suggested Citation

  • Chang, Mei-Chu & Yang, Albert C.-C. & Eugene Stanley, H. & Peng, C.-K., 2017. "Measuring information-based energy and temperature of literary texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 783-789.
  • Handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:783-789
    DOI: 10.1016/j.physa.2016.11.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116309293
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.11.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:783-789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.