IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v468y2017icp158-170.html
   My bibliography  Save this article

Monte Carlo simulations of an Ising bilayer with non-equivalent planes

Author

Listed:
  • Diaz, I.J.L.
  • Branco, N.S.

Abstract

We study the thermodynamic and magnetic properties of an Ising bilayer ferrimagnet. The system is composed of two interacting non-equivalent planes in which the intralayer couplings are ferromagnetic while the interlayer interactions are antiferromagnetic. Moreover, one of the planes is randomly diluted. The study is carried out within a Monte Carlo approach employing the multiple histogram reweighting method and finite-size scaling tools. The occurrence of a compensation phenomenon is verified and the compensation temperature, as well as the critical temperature for the model, are obtained as functions of the Hamiltonian parameters. We present a detailed discussion of the regions of the parameter space where the compensation effect is present or absent. Our results are then compared to a mean-field-like approximation applied to the same model by Balcerzak and Szałowski (2014). Although the Monte Carlo and mean-field results agree qualitatively, our quantitative results are significantly different.

Suggested Citation

  • Diaz, I.J.L. & Branco, N.S., 2017. "Monte Carlo simulations of an Ising bilayer with non-equivalent planes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 158-170.
  • Handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:158-170
    DOI: 10.1016/j.physa.2016.10.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116307427
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.10.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gharaibeh, Maen & Obeidat, Abdalla & Qaseer, Mohammad-Khair & Badarneh, Mohammad, 2020. "Compensation and critical behavior of Ising mixed spin (1-1/2-1) three layers system of cubic structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:158-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.