IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp579-585.html
   My bibliography  Save this article

Synchronization transmission of target signal within the coupling network with quantum chaos effect

Author

Listed:
  • Li, Wenlin
  • Li, Chong
  • Song, Heshan

Abstract

In this work, we propose a novel technology to investigate the synchronization transmission of target signal within the coupling network. In this new technology, the network synchronization transmission is realized through the coupling between the network nodes, and the controller is not required to add in the network. Especially, as long as the target signal can be input to an arbitrary node in the network, so all the network nodes are synchronized to the target signal, that is, the target signal has got synchronization transmission.

Suggested Citation

  • Li, Wenlin & Li, Chong & Song, Heshan, 2016. "Synchronization transmission of target signal within the coupling network with quantum chaos effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 579-585.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:579-585
    DOI: 10.1016/j.physa.2016.06.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116303934
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lü, Ling & Li, Chengren & Bai, Suyuan & Li, Gang & Rong, Tingting & Gao, Yan & Yan, Zhe, 2017. "Synchronization of uncertain time-varying network based on sliding mode control technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 808-817.
    2. Lü, Ling & Li, Chengren & Bai, Suyuan & Gao, Liyu & Ge, Lianjun & Han, Changhui, 2017. "Cluster synchronization between uncertain networks with different dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 429-437.
    3. Li, Chengren & Lü, Ling & Chen, Liansong & Hong, Yixuan & Zhou, Shuang & Yang, Yiming, 2018. "Cluster synchronization transmission of different external signals in discrete uncertain network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 238-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:579-585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.