IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v461y2016icp46-60.html
   My bibliography  Save this article

Mathematical model for drug molecules encapsulated in lipid nanotube

Author

Listed:
  • Putthikorn, Sasipim
  • Baowan, Duangkamon

Abstract

Lipid nanotube is considered as a nanocontainer for drug and gene delivery. It is important to understand a basic idea of the encapsulation process. In this paper, we use the Lennard-Jones potential function and the continuous approximation to explain the energy behaviour of three hollow shapes of Doxorubicin (DOX) clusters that are a sphere, a cylinder, and an ellipsoid interacting with the lipid nanotube. On assuming that the surface areas of the three structures are equal, we can find the minimum size of the lipid nanotube that encapsulates DOX inside by determining the suction energy. Moreover, we find that a long cylindrical drug provides the largest suction energy among other structures studied here due to the perfect fit between the cylindrical drug and the cylindrical tube. This investigation is the first step to develop the design of nanocapsule for medical application.

Suggested Citation

  • Putthikorn, Sasipim & Baowan, Duangkamon, 2016. "Mathematical model for drug molecules encapsulated in lipid nanotube," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 46-60.
  • Handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:46-60
    DOI: 10.1016/j.physa.2016.05.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116302126
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baowan, Duangkamon & Thamwattana, Ngamta, 2014. "Modelling encapsulation of gold and silver nanoparticles inside lipid nanotubes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 149-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Hu & Lv, Zheng, 2018. "Vibration and instability analysis of flow-conveying carbon nanotubes in the presence of material uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 85-103.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:46-60. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.