IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v460y2016icp294-303.html
   My bibliography  Save this article

Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

Author

Listed:
  • Gao, Zhong-Ke
  • Cai, Qing
  • Dong, Na
  • Zhang, Shan-Shan
  • Bo, Yun
  • Zhang, Jie

Abstract

Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

Suggested Citation

  • Gao, Zhong-Ke & Cai, Qing & Dong, Na & Zhang, Shan-Shan & Bo, Yun & Zhang, Jie, 2016. "Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 294-303.
  • Handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:294-303
    DOI: 10.1016/j.physa.2016.05.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116302205
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahmiri, Salim, 2018. "Causal influences between spontaneous fluctuations in resting state fMRI of central and peripheral eccentricity representations in the human visual cortex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 756-762.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:294-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.