IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v460y2016icp230-234.html
   My bibliography  Save this article

Community detection in networks based on minimum spanning tree and modularity

Author

Listed:
  • Saoud, Bilal
  • Moussaoui, Abdelouahab

Abstract

In this paper we propose a novel splitting and merging method for community detection in which a minimum spanning tree (MST) of dissimilarity between nodes in graph is employed. In the splitting process, edges with high dissimilarity in the MST are removed to construct small disconnected subgroups of nodes from the same community. In the merging process, subgroup pairs are iteratively merged to identify the final community structure maximizing the modularity. The proposed method requires no parameter. We provide a general framework for implementing such a method. Experimental results obtained by applying the method on computer-generated networks and different real-world networks show the effectiveness of the proposed method.

Suggested Citation

  • Saoud, Bilal & Moussaoui, Abdelouahab, 2016. "Community detection in networks based on minimum spanning tree and modularity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 230-234.
  • Handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:230-234
    DOI: 10.1016/j.physa.2016.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116301996
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yongbin & Li, Le & Wang, Yougui & Chen, Jiawei & Stanley, H. Eugene, 2019. "A study of Chinese regional hierarchical structure based on surnames," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 169-176.
    2. Bilal, Saoud & Abdelouahab, Moussaoui, 2017. "Evolutionary algorithm and modularity for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 89-96.
    3. Dabaghi Zarandi, Fataneh & Kuchaki Rafsanjani, Marjan, 2018. "Community detection in complex networks using structural similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 882-891.
    4. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:230-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.