IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v457y2016icp598-606.html
   My bibliography  Save this article

Enhancing quantum Fisher information by utilizing uncollapsing measurements

Author

Listed:
  • He, Juan
  • Ding, Zhi-Yong
  • Ye, Liu

Abstract

As an indicator of estimation precision, quantum Fisher information (QFI) lies at the heart of quantum metrology theory. In this work, an effective scheme for enhancing QFI is proposed by utilizing quantum uncollapsing measurements. Two kinds of strategies for the arbitrary two-qubit pure state with weight parameter and phase parameter are implemented under different situations, respectively. We derive the explicit conditions for the optimal measurement strengths, and verify that the QFI can be improved quite well. Meanwhile, due to the relation of quantum correlation and QFI, the maximal value of QFI associated with phase parameter for pure state is always equal to 1. It is worth noting that the optimal measurement strength is only related to the weight parameter, as uncollapsing measurements operation does not induce any disturbance on the value of phase parameter. The scheme also can be extended to improve the parameter estimation precision for an N-qubit pure state. In addition, as an example, the situation of an arbitrary single-qubit state under amplitude damping channel is investigated. It is shown that our scheme also works well for enhancing QFI under decoherence.

Suggested Citation

  • He, Juan & Ding, Zhi-Yong & Ye, Liu, 2016. "Enhancing quantum Fisher information by utilizing uncollapsing measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 598-606.
  • Handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:598-606
    DOI: 10.1016/j.physa.2016.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116301157
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Razavian, Sholeh & Paris, Matteo G.A., 2019. "Quantum metrology out of equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 825-833.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:457:y:2016:i:c:p:598-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.