IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v456y2016icp256-270.html
   My bibliography  Save this article

DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment

Author

Listed:
  • Li, Yushuang
  • Liu, Qian
  • Zheng, Xiaoqi

Abstract

A highly compact and simple 2D graphical representation of DNA sequences, named DUC-Curve, is constructed through mapping four nucleotides to a unit circle with a cyclic order. DUC-Curve could directly detect nucleotide, di-nucleotide compositions and microsatellite structure from DNA sequences. Moreover, it also could be used for DNA sequence alignment. Taking geometric center vectors of DUC-Curves as sequence descriptor, we perform similarity analysis on the first exons of β-globin genes of 11 species, oncogene TP53 of 27 species and twenty-four Influenza A viruses, respectively. The obtained reasonable results illustrate that the proposed method is very effective in sequence comparison problems, and will at least play a complementary role in classification and clustering problems.

Suggested Citation

  • Li, Yushuang & Liu, Qian & Zheng, Xiaoqi, 2016. "DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 256-270.
  • Handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:256-270
    DOI: 10.1016/j.physa.2016.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300590
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ole Madsen & Mark Scally & Christophe J. Douady & Diana J. Kao & Ronald W. DeBry & Ronald Adkins & Heather M. Amrine & Michael J. Stanhope & Wilfried W. de Jong & Mark S. Springer, 2001. "Parallel adaptive radiations in two major clades of placental mammals," Nature, Nature, vol. 409(6820), pages 610-614, February.
    2. Pal, Mayukha & Satish, B. & Srinivas, K. & Rao, P. Madhusudana & Manimaran, P., 2015. "Multifractal detrended cross-correlation analysis of coding and non-coding DNA sequences through chaos-game representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 596-603.
    3. Hou, Wenbing & Pan, Qiuhui & He, Mingfeng, 2014. "A novel representation of DNA sequence based on CMI coding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 87-96.
    4. William J. Murphy & Eduardo Eizirik & Warren E. Johnson & Ya Ping Zhang & Oliver A. Ryder & Stephen J. O'Brien, 2001. "Molecular phylogenetics and the origins of placental mammals," Nature, Nature, vol. 409(6820), pages 614-618, February.
    5. Liao, Bo & Xiang, Qilin & Cai, Lijun & Cao, Zhi, 2013. "A new graphical coding of DNA sequence and its similarity calculation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4663-4667.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian, Kun & Luan, Yihui, 2018. "Phylogenetic analysis of DNA sequences based on fractional Fourier transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 795-808.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Kun & Luan, Yihui, 2018. "Phylogenetic analysis of DNA sequences based on fractional Fourier transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 795-808.
    2. Jin, Xin & Nie, Rencan & Zhou, Dongming & Yao, Shaowen & Chen, Yanyan & Yu, Jiefu & Wang, Quan, 2016. "A novel DNA sequence similarity calculation based on simplified pulse-coupled neural network and Huffman coding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 325-338.
    3. Qian, Kun & Luan, Yihui, 2017. "Weighted measures based on maximizing deviation for alignment-free sequence comparison," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 235-242.
    4. Pal, Mayukha & Kiran, V. Satya & Rao, P. Madhusudana & Manimaran, P., 2016. "Multifractal detrended cross-correlation analysis of genome sequences using chaos-game representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 288-293.
    5. Hasan, Rashid & Mohammed Salim, M., 2017. "Power law cross-correlations between price change and volume change of Indian stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 620-631.
    6. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    7. Hou, Wenbing & Pan, Qiuhui & He, Mingfeng, 2014. "A novel representation of DNA sequence based on CMI coding," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 87-96.
    8. Charutha, S. & Gopal Krishna, M. & Manimaran, P., 2020. "Multifractal analysis of Indian public sector enterprises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:256-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.