IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v453y2016icp290-297.html
   My bibliography  Save this article

Using mapping entropy to identify node centrality in complex networks

Author

Listed:
  • Nie, Tingyuan
  • Guo, Zheng
  • Zhao, Kun
  • Lu, Zhe-Ming

Abstract

The problem of finding the best strategy to attack a network or immunize a population with a minimal number of nodes has attracted much current research interest. The assessment of node importance has been a fundamental issue in the research of complex networks. In this paper, we propose a new concept called mapping entropy (ME) to identify the importance of a node in the complex network. The concept is established according to the local information which considers the correlation among all neighbors of a node. We evaluate the efficiency of the centrality by static and dynamic attacks on standard network models and real-world networks. The simulation result shows that the new centrality is more efficient than traditional attack strategies, whether it is static or dynamic.

Suggested Citation

  • Nie, Tingyuan & Guo, Zheng & Zhao, Kun & Lu, Zhe-Ming, 2016. "Using mapping entropy to identify node centrality in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 290-297.
  • Handle: RePEc:eee:phsmap:v:453:y:2016:i:c:p:290-297
    DOI: 10.1016/j.physa.2016.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001758
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tuğal, İhsan & Karcı, Ali, 2019. "Comparisons of Karcı and Shannon entropies and their effects on centrality of social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 352-363.
    2. Ni, Chengzhang & Yang, Jun & Kong, Demei, 2020. "Sequential seeding strategy for social influence diffusion with improved entropy-based centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Yu, Hui & Cao, Xi & Liu, Zun & Li, Yongjun, 2017. "Identifying key nodes based on improved structural holes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 318-327.
    4. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    5. Yang, Yu & He, Ze & Song, Zouying & Fu, Xin & Wang, Jianwei, 2018. "Investigation on structural and spatial characteristics of taxi trip trajectory network in Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 755-766.
    6. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2020. "Entropy based flow transfer for influence dissemination in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    7. Liang He & Shouwei Li, 2017. "Network Entropy and Systemic Risk in Dynamic Banking Systems," Complexity, Hindawi, vol. 2017, pages 1-7, November.
    8. Jing, Weiwei & Xu, Xiangdong & Pu, Yichao, 2020. "Route redundancy-based approach to identify the critical stations in metro networks: A mean-excess probability measure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:453:y:2016:i:c:p:290-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.