IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v453y2016icp24-34.html
   My bibliography  Save this article

Negative temperatures and the definition of entropy

Author

Listed:
  • Swendsen, Robert H.
  • Wang, Jian-Sheng

Abstract

The concept of negative temperature has recently received renewed interest in the context of debates about the correct definition of the thermodynamic entropy in statistical mechanics. Several researchers have identified the thermodynamic entropy exclusively with the “volume entropy” suggested by Gibbs, and have further concluded that by this definition, negative temperatures violate the principles of thermodynamics. We disagree with these conclusions. We demonstrate that volume entropy is inconsistent with the postulates of thermodynamics for systems with non-monotonic energy densities, while a definition of entropy based on the probability distributions of macroscopic variables does satisfy the postulates of thermodynamics. Our results confirm that negative temperature is a valid extension of thermodynamics.

Suggested Citation

  • Swendsen, Robert H. & Wang, Jian-Sheng, 2016. "Negative temperatures and the definition of entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 24-34.
  • Handle: RePEc:eee:phsmap:v:453:y:2016:i:c:p:24-34
    DOI: 10.1016/j.physa.2016.01.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001229
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dunkel, Jörn & Hilbert, Stefan, 2006. "Phase transitions in small systems: Microcanonical vs. canonical ensembles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 390-406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matty, Michael & Lancaster, Lachlan & Griffin, William & Swendsen, Robert H., 2017. "Comparison of canonical and microcanonical definitions of entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 474-489.
    2. Porporato, Amilcare & Rondoni, Lamberto, 2024. "Deterministic engines extending Helmholtz thermodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    3. Kalogeropoulos, Nikolaos, 2022. "Coarse-graining and symplectic non-squeezing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    4. Jarzynski, Christopher, 2020. "Fluctuation relations and strong inequalities for thermally isolated systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davis, Sergio & Loyola, Claudia & Peralta, Joaquín, 2023. "Configurational density of states and melting of simple solids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    2. Matty, Michael & Lancaster, Lachlan & Griffin, William & Swendsen, Robert H., 2017. "Comparison of canonical and microcanonical definitions of entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 474-489.

    More about this item

    Keywords

    Negative temperature; Entropy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:453:y:2016:i:c:p:24-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.