IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v451y2016icp565-577.html
   My bibliography  Save this article

Static and dynamical critical behavior of the monomer–monomer reaction model with desorption

Author

Listed:
  • da Costa, E.C.
  • Rusch, Flávio Roberto

Abstract

We studied in this work the monomer–monomer reaction model on a linear chain. The model is described by the following reaction: A+B→AB, where A and B are two monomers that arrive at the surface with probabilities yA and yB, respectively, and we have considered desorption of the monomer B with probability α. The model is studied in the adsorption controlled limit where the reaction rate is infinitely larger than the adsorption rate. We employ site and pair mean-field approximations as well as static and dynamical Monte Carlo simulations. We show that the model exhibits a continuous phase transition between an active steady state and an A-absorbing state, when the parameter yA is varied through a critical value, which depends on the value of α. Monte Carlo simulations and finite-size scaling analysis near the critical point are used to determine the static critical exponents β and ν⊥ and the dynamical critical exponents ν∥ and z. The results found for the monomer–monomer reaction model with B desorption, in the linear chain, are different from those found by E. V. Albano (Albano, 1992) and are in accordance with the values obtained by Jun Zhuo and Sidney Redner (Zhuo and Redner, 1993), and endorse the conjecture of Grassberger, which states that any system undergoing a continuous phase transition from an active steady state to a single absorbing state, exhibits the same critical behavior of the directed percolation universality class.

Suggested Citation

  • da Costa, E.C. & Rusch, Flávio Roberto, 2016. "Static and dynamical critical behavior of the monomer–monomer reaction model with desorption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 565-577.
  • Handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:565-577
    DOI: 10.1016/j.physa.2016.01.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001175
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:565-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.