IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v450y2016icp385-394.html
   My bibliography  Save this article

The distribution of all French communes: A composite parametric approach

Author

Listed:
  • Calderín-Ojeda, Enrique

Abstract

The distribution of the size of all French settlements (communes) from 1962 to 2012 is examined by means of a three-parameter composite Lognormal–Pareto distribution. This model is based on a Lognormal density up to an unknown threshold value and a Pareto density thereafter. Recent findings have shown that the untruncated settlement size data is in excellent agreement with the Lognormal distribution in the lower and central parts of the empirical distribution, but it follows a power law in the upper tail. For that reason, this probabilistic family, that nests both models, seems appropriate to describe urban agglomeration in France. The outcomes of this paper reveal that for the early periods (1962–1975) the upper quartile of the commune size data adheres closely to a power law distribution, whereas for later periods (2006–2012) most of the city size dynamics is explained by a Lognormal model.

Suggested Citation

  • Calderín-Ojeda, Enrique, 2016. "The distribution of all French communes: A composite parametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 385-394.
  • Handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:385-394
    DOI: 10.1016/j.physa.2016.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116000571
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel Puente-Ajovín & Arturo Ramos, 2015. "On the parametric description of the French, German, Italian and Spanish city size distributions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 489-509, March.
    2. Giesen, Kristian & Zimmermann, Arndt & Suedekum, Jens, 2010. "The size distribution across all cities - Double Pareto lognormal strikes," Journal of Urban Economics, Elsevier, vol. 68(2), pages 129-137, September.
    3. Rafael González-Val & Arturo Ramos & Fernando Sanz-Gracia & María Vera-Cabello, 2015. "Size distributions for all cities: Which one is best?," Papers in Regional Science, Wiley Blackwell, vol. 94(1), pages 177-196, March.
    4. Anderson, Gordon & Ge, Ying, 2005. "The size distribution of Chinese cities," Regional Science and Urban Economics, Elsevier, vol. 35(6), pages 756-776, November.
    5. Gangopadhyay, Kausik & Basu, B., 2009. "City size distributions for India and China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2682-2688.
    6. Ioannides, Yannis & Skouras, Spyros, 2013. "US city size distribution: Robustly Pareto, but only in the tail," Journal of Urban Economics, Elsevier, vol. 73(1), pages 18-29.
    7. Sarabia, José María & Prieto, Faustino, 2009. "The Pareto-positive stable distribution: A new descriptive model for city size data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4179-4191.
    8. Moshe Levy, 2009. "Gibrat's Law for (All) Cities: Comment," American Economic Review, American Economic Association, vol. 99(4), pages 1672-1675, September.
    9. Luckstead, Jeff & Devadoss, Stephen, 2014. "A comparison of city size distributions for China and India from 1950 to 2010," Economics Letters, Elsevier, vol. 124(2), pages 290-295.
    10. Moura, Newton J. & Ribeiro, Marcelo B., 2006. "Zipf law for Brazilian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 441-448.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshad, Sidra & Hu, Shougeng & Ashraf, Badar Nadeem, 2019. "Zipf’s law, the coherence of the urban system and city size distribution: Evidence from Pakistan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 87-103.
    2. Ramos, Arturo & Sanz-Gracia, Fernando, 2015. "US city size distribution revisited: Theory and empirical evidence," MPRA Paper 64051, University Library of Munich, Germany.
    3. Asif, Muhammad & Hussain, Zawar & Asghar, Zahid & Hussain, Muhammad Irfan & Raftab, Mariya & Shah, Said Farooq & Khan, Akbar Ali, 2021. "A statistical evidence of power law distribution in the upper tail of world billionaires’ data 2010–20," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    5. Luckstead, Jeff & Devadoss, Stephen & Danforth, Diana, 2017. "The size distributions of all Indian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 237-249.
    6. Gómez-Déniz, Emilio & Calderín-Ojeda, Enrique, 2015. "On the use of the Pareto ArcTan distribution for describing city size in Australia and New Zealand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 821-832.
    7. Arturo, Ramos, 2019. "Have the log-population processes stationary and independent increments? Empirical evidence for Italy, Spain and the USA along more than a century," MPRA Paper 93562, University Library of Munich, Germany.
    8. Ramos, Arturo & Sanz-Gracia, Fernando & González-Val, Rafael, 2013. "A new framework for the US city size distribution: Empirical evidence and theory," MPRA Paper 52190, University Library of Munich, Germany.
    9. Valente J. Matlaba & Mark J. Holmes & Philip McCann & Jacques Poot, 2013. "A Century Of The Evolution Of The Urban System In Brazil," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 25(3), pages 129-151, November.
    10. Sen, Hu & Chunxia, Yang & Xueshuai, Zhu & Zhilai, Zheng & Ya, Cao, 2015. "Distributions of region size and GDP and their relation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 46-56.
    11. Hasan Engin Duran & Andrzej Cieślik, 2021. "The distribution of city sizes in Turkey: A failure of Zipf’s law due to concavity," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(5), pages 1702-1719, October.
    12. Rafael González‐Val, 2019. "Historical urban growth in Europe (1300–1800)," Papers in Regional Science, Wiley Blackwell, vol. 98(2), pages 1115-1136, April.
    13. Kristian Giesen & Jens Suedekum, 2012. "The Size Distribution Across All 'Cities': A Unifying Approach," SERC Discussion Papers 0122, Centre for Economic Performance, LSE.
    14. Ge Hong & Shouhong Xie & Hanbing Li, 2022. "Spatial and Temporal Evolution Characteristics of China’s City Size Distribution Based on New Criteria," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    15. Giesen, Kristian & Suedekum, Jens, 2014. "City age and city size," European Economic Review, Elsevier, vol. 71(C), pages 193-208.
    16. Miguel Puente-Ajovín & Arturo Ramos, 2015. "On the parametric description of the French, German, Italian and Spanish city size distributions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 489-509, March.
    17. Daniel Broxterman & Anthony Yezer, 2021. "Human capital divergence and the size distribution of cities: Is Gibrat’s law obsolete?," Urban Studies, Urban Studies Journal Limited, vol. 58(12), pages 2549-2568, September.
    18. Kwong, Hok Shing & Nadarajah, Saralees, 2019. "A note on “Pareto tails and lognormal body of US cities size distribution”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 55-62.
    19. Rafael González-Val, 2019. "US city-size distribution and space," Spatial Economic Analysis, Taylor & Francis Journals, vol. 14(3), pages 283-300, July.
    20. Ramos, Arturo, 2015. "Are the log-growth rates of city sizes normally distributed? Empirical evidence for the US," MPRA Paper 65584, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:385-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.