IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v450y2016icp264-277.html
   My bibliography  Save this article

Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets

Author

Listed:
  • Guex, Guillaume

Abstract

In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source–targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.

Suggested Citation

  • Guex, Guillaume, 2016. "Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 264-277.
  • Handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:264-277
    DOI: 10.1016/j.physa.2015.12.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115011541
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kivimäki, Ilkka & Shimbo, Masashi & Saerens, Marco, 2014. "Developments in the theory of randomized shortest paths with a comparison of graph node distances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 600-616.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyama, Yuki & Hato, Eiji, 2019. "Prism-based path set restriction for solving Markovian traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 528-546.
    2. van Etten, Jacob, 2017. "R Package gdistance: Distances and Routes on Geographical Grids," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i13).
    3. Leleux, Pierre & Courtain, Sylvain & Françoisse, Kevin & Saerens, Marco, 2022. "Design of biased random walks on a graph with application to collaborative recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:264-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.