IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v445y2016icp256-263.html
   My bibliography  Save this article

Magnetic entanglement in spin-1/2 XY chains

Author

Listed:
  • Fumani, Fatemeh Khastehdel
  • Nemati, Somayyeh
  • Mahdavifar, Saeed
  • Darooneh, Amir Hosein

Abstract

In the study of entanglement in a spin chain, people often consider the nearest-neighbor spins. The motivation is the prevailing role of the short range interactions in creating quantum correlation between the 1st neighbor (1N) spins. Here, we address the same question between farther neighbor spins. We consider the one-dimensional (1D) spin-1/2 XY model in a magnetic field. Using the fermionization approach, we diagonalize the Hamiltonian of the system. Then, we provide the analytical results for entanglement between the 2nd, 3rd and 4th neighbor (denoted as 2N, 3N, and 4N respectively) spins. We find a magnetic entanglement that starts from a critical entangled-field (hcE) at zero temperature. The critical entangled-field depends on the distance between the spins. In addition to the analytical results, the mentioned phenomenon is confirmed by the numerical Lanczos calculations. By adding the temperature to the model, the magnetic entanglement remains stable up to a critical temperature, Tc. Our results show that entanglement spreads step by step to farther neighbors in the spin chain by reducing temperature. At first, the 1N spins are entangled and then further neighbors will be entangled respectively. Tc depends on the value of the magnetic field and will be maximized at the quantum critical field.

Suggested Citation

  • Fumani, Fatemeh Khastehdel & Nemati, Somayyeh & Mahdavifar, Saeed & Darooneh, Amir Hosein, 2016. "Magnetic entanglement in spin-1/2 XY chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 256-263.
  • Handle: RePEc:eee:phsmap:v:445:y:2016:i:c:p:256-263
    DOI: 10.1016/j.physa.2015.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009826
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mzaouali, Zakaria & El Baz, Morad, 2019. "Long range quantum coherence, quantum & classical correlations in Heisenberg XX chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 119-130.
    2. Motamedifar, M., 2017. "Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 280-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:445:y:2016:i:c:p:256-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.