IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp582-588.html
   My bibliography  Save this article

Critical exponents of a self-propelled particles system

Author

Listed:
  • Cambui, Dorilson S.
  • de Arruda, Alberto S.
  • Godoy, Maurício

Abstract

The Vicsek model of self-propelled particles is an important tool in the study of the collective motion of live organisms. The model consists of particles that move with a constant velocity and adopt, in a region called the zone of repulsion, the average motion direction of their neighbors disturbed by an external noise. A second-order phase transition from a disordered state, with motion in random directions, to an ordered motion state was observed. In this work, we have estimated, using finite-size scaling arguments, the critical exponents β, γ and ν of the original Vicsek model as a function of parameters important to the model, such as the orientation radius size, density, and velocity modulus. Our results show that the critical exponents depend greatly on these parameters.

Suggested Citation

  • Cambui, Dorilson S. & de Arruda, Alberto S. & Godoy, Maurício, 2016. "Critical exponents of a self-propelled particles system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 582-588.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:582-588
    DOI: 10.1016/j.physa.2015.10.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009346
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bazeia, D. & Bongestab, M. & de Oliveira, B.F., 2022. "Influence of the neighborhood on cyclic models of biodiversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:582-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.