IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v443y2016icp32-41.html
   My bibliography  Save this article

Solutions for a sorption process governed by a fractional diffusion equation

Author

Listed:
  • Lenzi, E.K.
  • dos Santos, M.A.F.
  • Vieira, D.S.
  • Zola, R.S.
  • Ribeiro, H.V.

Abstract

We investigate a sorption process where one substance spreads out through another having possibility of chemical reaction between them. So as to describe this process, we have considered the bulk dynamics governed by a fractional diffusion equation, where the reaction term may describe an irreversible or a reversible process. This reaction term represents a generalization of the first order kinetic equation taking memory effects into account. The analytical solutions for the mean square displacement, survival probability and probability density of the particles we have obtained show a rich class of behaviors connected to anomalous diffusion.

Suggested Citation

  • Lenzi, E.K. & dos Santos, M.A.F. & Vieira, D.S. & Zola, R.S. & Ribeiro, H.V., 2016. "Solutions for a sorption process governed by a fractional diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 32-41.
  • Handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:32-41
    DOI: 10.1016/j.physa.2015.09.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115007797
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lenzi, E.K. & Menechini Neto, R. & Tateishi, A.A. & Lenzi, M.K. & Ribeiro, H.V., 2016. "Fractional diffusion equations coupled by reaction terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 9-16.
    2. Lin, Guoxing, 2017. "Analyzing signal attenuation in PFG anomalous diffusion via a modified Gaussian phase distribution approximation based on fractal derivative model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 277-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:32-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.