IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v443y2016icp221-230.html
   My bibliography  Save this article

Fractal scaling in bottlenose dolphin (Tursiops truncatus) echolocation: A case study

Author

Listed:
  • Perisho, Shaun T.
  • Kelty-Stephen, Damian G.
  • Hajnal, Alen
  • Houser, Dorian
  • Kuczaj II, Stan A.

Abstract

Fractal scaling patterns, which entail a power-law relationship between magnitude of fluctuations in a variable and the scale at which the variable is measured, have been found in many aspects of human behavior. These findings have led to advances in behavioral models (e.g. providing empirical support for cascade-driven theories of cognition) and have had practical medical applications (e.g. providing new methods for early diagnosis of medical conditions). In the present paper, fractal analysis is used to investigate whether similar fractal scaling patterns exist in inter-click interval and peak–peak amplitude measurements of bottlenose dolphin click trains. Several echolocation recordings taken from two male bottlenose dolphins were analyzed using Detrended Fluctuation Analysis and Higuchi’s (1988) method for determination of fractal dimension. Both animals were found to exhibit fractal scaling patterns near what is consistent with persistent long range correlations. These findings suggest that recent advances in human cognition and medicine may have important parallel applications to echolocation as well.

Suggested Citation

  • Perisho, Shaun T. & Kelty-Stephen, Damian G. & Hajnal, Alen & Houser, Dorian & Kuczaj II, Stan A., 2016. "Fractal scaling in bottlenose dolphin (Tursiops truncatus) echolocation: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 221-230.
  • Handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:221-230
    DOI: 10.1016/j.physa.2015.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115007396
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seuront, Laurent & Cribb, Nardi, 2011. "Fractal analysis reveals pernicious stress levels related to boat presence and type in the Indo–Pacific bottlenose dolphin, Tursiops aduncus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2333-2339.
    2. Schmitt, Francccois G. & Seuront, Laurent, 2001. "Multifractal random walk in copepod behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 375-396.
    3. David W. Sims & Victoria A. Quayle, 1998. "Selective foraging behaviour of basking sharks on zooplankton in a small-scale front," Nature, Nature, vol. 393(6684), pages 460-464, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seuront, Laurent & Spilmont, Nicolas, 2002. "Self-organized criticality in intertidal microphytobenthos patch patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 513-539.
    2. Bao, Xiaomei & Tian, Canrong, 2019. "Delay driven vegetation patterns of a plankton system on a network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 74-88.
    3. S. R. Kahane-Rapport & M. F. Czapanskiy & J. A. Fahlbusch & A. S. Friedlaender & J. Calambokidis & E. L. Hazen & J. A. Goldbogen & M. S. Savoca, 2022. "Field measurements reveal exposure risk to microplastic ingestion by filter-feeding megafauna," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. R L Sanzogni & M G Meekan & J J Meeuwig, 2015. "Multi-Year Impacts of Ecotourism on Whale Shark (Rhincodon typus) Visitation at Ningaloo Reef, Western Australia," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
    5. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Three-dimensional pattern dynamics of a fractional predator-prey model with cross-diffusion and herd behavior," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    6. José M Landeira & Bruno Ferron & Michel Lunven & Pascal Morin & Louis Marié & Marc Sourisseau, 2014. "Biophysical Interactions Control the Size and Abundance of Large Phytoplankton Chains at the Ushant Tidal Front," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-14, February.
    7. Calif, Rudy & Schmitt, François G. & Huang, Yongxiang, 2013. "Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4106-4120.
    8. Jo Dorning & Stephen Harris, 2017. "Dominance, gender, and season influence food patch use in a group-living, solitary foraging canid," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1302-1313.
    9. Kelty-Stephen, Damian G. & Mangalam, Madhur, 2024. "Additivity suppresses multifractal nonlinearity due to multiplicative cascade dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:221-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.