IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v443y2016icp22-31.html
   My bibliography  Save this article

Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure

Author

Listed:
  • Shi, Wei
  • Lu, Wei-Zhen
  • Xue, Yu
  • He, Hong-Di

Abstract

A revised lattice Boltzmann model concerning the equilibrium traffic pressure is proposed in this study to tackle the phase transition phenomena of traffic flow system. The traditional lattice Boltzmann model has limitation to investigate the complex traffic phase transitions due to its difficulty for modeling the equilibrium velocity distribution. Concerning this drawback, the equilibrium traffic pressure is taken into account to derive the equilibrium velocity distribution in the revised lattice Boltzmann model. In the proposed model, a three-dimensional velocity-space is assumed to determine the equilibrium velocity distribution functions and an alternative, new derivative approach is introduced to deduct the macroscopic equations with the first-order accuracy level from the lattice Boltzmann model. Based on the linear stability theory, the stability conditions of the corresponding macroscopic equations can be obtained. The outputs indicate that the stability curve is divided into three regions, i.e., the stable region, the neutral stability region, and the unstable region. In the stable region, small disturbance appears in the initial uniform flow and will vanish after long term evolution, while in the unstable region, the disturbance will be enlarged and finally leads to the traffic system entering the congested state. In the neutral stability region, small disturbance does not vanish with time and maintains its amplitude in the traffic system. Conclusively, the stability of traffic system is found to be enhanced as the equilibrium traffic pressure increases. Finally, the numerical outputs of the proposed model are found to be consistent with the recognized, theoretical results.

Suggested Citation

  • Shi, Wei & Lu, Wei-Zhen & Xue, Yu & He, Hong-Di, 2016. "Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 22-31.
  • Handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:22-31
    DOI: 10.1016/j.physa.2015.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115007815
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Ding-Jun & Zhang, Cun-Bao & Liu, Jun & Li, Tao & Li, Qi-Lang, 2024. "Research of the left-turn vehicles lane-changing behaviors at signalized intersections with contraflow lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:443:y:2016:i:c:p:22-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.