IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v440y2015icp57-67.html
   My bibliography  Save this article

Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors

Author

Listed:
  • Sun, Jie
  • Li, Zhipeng
  • Sun, Jian

Abstract

Recurring bottlenecks at freeway/expressway are considered as the main cause of traffic congestion in urban traffic system while on-ramp bottlenecks are the most significant sites that may result in congestion. In this paper, the traffic bottleneck characteristics for a simple and typical expressway on-ramp are investigated by the means of simulation modeling under the open boundary condition. In simulations, the running behaviors of each vehicle are described by a car-following model with a calibrated optimal velocity function, and lane changing actions at the merging section are modeled by a novel set of rules. We numerically derive the traffic volume of on-ramp bottleneck under different upstream arrival rates of mainline and ramp flows. It is found that the vehicles from the ramp strongly affect the pass of mainline vehicles and the merging ratio changes with the increasing of ramp vehicle, when the arrival rate of mainline flow is greater than a critical value. In addition, we clarify the dependence of the merging ratio of on-ramp bottleneck on the probability of lane changing and the length of the merging section, and some corresponding intelligent control strategies are proposed in actual traffic application.

Suggested Citation

  • Sun, Jie & Li, Zhipeng & Sun, Jian, 2015. "Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 57-67.
  • Handle: RePEc:eee:phsmap:v:440:y:2015:i:c:p:57-67
    DOI: 10.1016/j.physa.2015.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115006597
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen Li & Qiaojun Xiang & Yongfeng Ma & Xin Gu & Han Li, 2016. "Crash Risk Prediction Modeling Based on the Traffic Conflict Technique and a Microscopic Simulation for Freeway Interchange Merging Areas," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    2. Jin, Zhizhan & Li, Zhipeng & Cheng, Rongjun & Ge, Hongxia, 2018. "Nonlinear analysis for an improved car-following model account for the optimal velocity changes with memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 278-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:440:y:2015:i:c:p:57-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.