IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v438y2015icp454-468.html
   My bibliography  Save this article

An online expectation maximization algorithm for exploring general structure in massive networks

Author

Listed:
  • Chai, Bianfang
  • Jia, Caiyan
  • Yu, Jian

Abstract

Mixture model and stochastic block model (SBM) for structure discovery employ a broad and flexible definition of vertex classes such that they are able to explore a wide variety of structure. Compared to the existing algorithms based on the SBM (their time complexities are O(mc2), where m and c are the number of edges and clusters), the algorithms of mixture model are capable of dealing with networks with a large number of communities more efficiently due to their O(mc) time complexity. However, the algorithms of mixture model using expectation maximization (EM) technique are still too slow to deal with real million-node networks, since they compute hidden variables on the entire network in each iteration. In this paper, an online variational EM algorithm is designed to improve the efficiency of the EM algorithms. In each iteration, our online algorithm samples a node and estimates its cluster memberships only by its adjacency links, and model parameters are then estimated by the memberships of the sampled node and old model parameters obtained in the previous iteration. The provided online algorithm updates model parameters subsequently by the links of a new sampled node and explores the general structure of massive and growing networks with millions of nodes and hundreds of clusters in hours. Compared to the relevant algorithms on synthetic and real networks, the proposed online algorithm costs less with little or no degradation of accuracy. Results illustrate that the presented algorithm offers a good trade-off between precision and efficiency.

Suggested Citation

  • Chai, Bianfang & Jia, Caiyan & Yu, Jian, 2015. "An online expectation maximization algorithm for exploring general structure in massive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 454-468.
  • Handle: RePEc:eee:phsmap:v:438:y:2015:i:c:p:454-468
    DOI: 10.1016/j.physa.2015.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711500610X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:438:y:2015:i:c:p:454-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.