IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v437y2015icp430-436.html
   My bibliography  Save this article

Dynamic phase diagrams of a ferrimagnetic mixed spin (1/2, 1) Ising system within the path probability method

Author

Listed:
  • Ertaş, Mehmet
  • Keskin, Mustafa

Abstract

In this study we used the path probability method (PPM) to calculate the dynamic phase diagrams of a ferrimagnetic mixed spin-(1/2, 1) Ising system under an oscillating magnetic field. One of the main advantages of the PPM over the mean-field approximation and the effective-field theory based on Glauber-type stochastic dynamics is that it contains two rate constants which are very important for studying dynamic behaviors. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and the twelve main different topological types of the phase diagrams are obtained. The phase diagrams contain paramagnetic (p), ferrimagnetic (i) and i+p mixed phases. They also exhibit a dynamic tricritical and reentrant behavior as well as the dynamic double critical end point (B), critical end point (E), quadruple point (QP) and triple point (TP). The dynamic phase diagrams are compared and discussed with the phase diagrams obtained in previous works within the mean-field approximation and the effective-field theory based on Glauber-type stochastic dynamics.

Suggested Citation

  • Ertaş, Mehmet & Keskin, Mustafa, 2015. "Dynamic phase diagrams of a ferrimagnetic mixed spin (1/2, 1) Ising system within the path probability method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 430-436.
  • Handle: RePEc:eee:phsmap:v:437:y:2015:i:c:p:430-436
    DOI: 10.1016/j.physa.2015.05.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115005385
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.05.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:437:y:2015:i:c:p:430-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.