IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v434y2015icp232-239.html
   My bibliography  Save this article

Ecological optimization for general heat engines

Author

Listed:
  • Long, Rui
  • Liu, Wei

Abstract

We conducted an analysis of efficiency and its bounds for general heat engines under the maximum ecological criterion. For generality, both nonisothermal heat-exchanging processes and internal dissipation were taken into consideration. When the product of the internal dissipation and the heat capacity ratio is one, the efficiency under the maximum ecological criterion is the same as that of the irreversible Carnot model. However, the efficiencies have different physical meanings and optimization spaces. Furthermore, the efficiency is independent of the time it takes to complete each process and the heat conductance. For other situations, numerical calculations were conducted to investigate the parameters’ effects on optimal efficiency. When the dimensionless contact times approach zero, the irreversible Carnot model is recovered. The general upper and lower bounds of optimal efficiency are obtained by applying the asymmetric heat capacity ratio limits when the dimensionless contact times approach infinity. In addition, the efficiency of general endoreversible heat engines was investigated. The efficiency bounds of different real-life heat engines under the maximum ecological criterion are proposed.

Suggested Citation

  • Long, Rui & Liu, Wei, 2015. "Ecological optimization for general heat engines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 232-239.
  • Handle: RePEc:eee:phsmap:v:434:y:2015:i:c:p:232-239
    DOI: 10.1016/j.physa.2015.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115003842
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Ecological analysis of a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 107(C), pages 95-102.
    2. Li, Baode & Long, Rui & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a thermally regenerative electrochemical refrigerator," Energy, Elsevier, vol. 112(C), pages 43-51.
    3. Long, Rui & Liu, Wei, 2016. "Ecological optimization and coefficient of performance bounds of general refrigerators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 14-21.
    4. Zhang, Lei & Chen, Lingen & Sun, Fengrui, 2016. "Power optimization of chemically driven heat engine based on first and second order reaction kinetic theory and probability theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 221-230.
    5. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    6. Zhang, Yanchao & Xie, Zhenzhen, 2022. "Thermodynamic efficiency and bounds of pumped thermal electricity storage under whole process ecological optimization," Renewable Energy, Elsevier, vol. 188(C), pages 711-720.
    7. Yu, Youhong & Ding, Zemin & Chen, Lingen & Wang, Wenhua & Sun, Fengrui, 2016. "Power and efficiency optimization for an energy selective electron heat engine with double-resonance energy filter," Energy, Elsevier, vol. 107(C), pages 287-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:434:y:2015:i:c:p:232-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.