IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v431y2015icp109-123.html
   My bibliography  Save this article

Temperature compensation via cooperative stability in protein degradation

Author

Listed:
  • Peng, Yuanyuan
  • Hasegawa, Yoshihiko
  • Noman, Nasimul
  • Iba, Hitoshi

Abstract

Temperature compensation is a notable property of circadian oscillators that indicates the insensitivity of the oscillator system’s period to temperature changes; the underlying mechanism, however, is still unclear. We investigated the influence of protein dimerization and cooperative stability in protein degradation on the temperature compensation ability of two oscillators. Here, cooperative stability means that high-order oligomers are more stable than their monomeric counterparts. The period of an oscillator is affected by the parameters of the dynamic system, which in turn are influenced by temperature. We adopted the Repressilator and the Atkinson oscillator to analyze the temperature sensitivity of their periods. Phase sensitivity analysis was employed to evaluate the period variations of different models induced by perturbations to the parameters. Furthermore, we used experimental data provided by other studies to determine the reasonable range of parameter temperature sensitivity. We then applied the linear programming method to the oscillatory systems to analyze the effects of protein dimerization and cooperative stability on the temperature sensitivity of their periods, which reflects the ability of temperature compensation in circadian rhythms. Our study explains the temperature compensation mechanism for circadian clocks. Compared with the no-dimer mathematical model and linear model for protein degradation, our theoretical results show that the nonlinear protein degradation caused by cooperative stability is more beneficial for realizing temperature compensation of the circadian clock.

Suggested Citation

  • Peng, Yuanyuan & Hasegawa, Yoshihiko & Noman, Nasimul & Iba, Hitoshi, 2015. "Temperature compensation via cooperative stability in protein degradation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 109-123.
  • Handle: RePEc:eee:phsmap:v:431:y:2015:i:c:p:109-123
    DOI: 10.1016/j.physa.2015.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115002411
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:431:y:2015:i:c:p:109-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.