IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v423y2015icp61-71.html
   My bibliography  Save this article

Fluid flow in a porous tree-shaped network: Optimal design and extension of Hess–Murray’s law

Author

Listed:
  • Miguel, Antonio F.

Abstract

This paper aims to contribute to the ongoing research on tree-shaped flow structures. Here, we focuses on porous-walled tree-shaped networks, namely the laminar fluid flow. Analytical models are developed for pressure distribution along the porous tree-network and for the hydraulic resistance of the network in terms of geometry of successive vessel segments, number of branches, branching levels and intrinsic permeability of walls. We also rely on constructal design to find important insights regarding the allometric relationships between the sizes of successive vessel segments of tree networks.

Suggested Citation

  • Miguel, Antonio F., 2015. "Fluid flow in a porous tree-shaped network: Optimal design and extension of Hess–Murray’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 423(C), pages 61-71.
  • Handle: RePEc:eee:phsmap:v:423:y:2015:i:c:p:61-71
    DOI: 10.1016/j.physa.2014.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114010607
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jianting, 2018. "Effective aperture and orientation of fractal fracture network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 27-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:423:y:2015:i:c:p:61-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.