IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v421y2015icp269-278.html
   My bibliography  Save this article

Multidimensional ion-acoustic solitary waves and shocks in quantum plasmas

Author

Listed:
  • Misra, A.P.
  • Sahu, Biswajit

Abstract

The nonlinear theory of two-dimensional ion-acoustic (IA) solitary waves and shocks (SWS) is revisited in a dissipative quantum plasma. The effects of dispersion, caused by the charge separation of electrons and ions and the quantum force associated with the Bohm potential for degenerate electrons, as well as, the dissipation due to the ion kinematic viscosity are considered. Using the reductive perturbation technique, a Kadomtsev–Petviashvili–Burgers (KPB)-type equation, which governs the evolution of small-amplitude SWS in quantum plasmas, is derived, and its different solutions are obtained and analyzed. It is shown that the KPB equation can admit either compressive or rarefactive SWS according to when H≶2/3, or the particle number density satisfies n0≷1.3×1031cm−3, where H is the ratio of the electron plasmon energy to the Fermi energy densities. Furthermore, the properties of large-amplitude stationary shocks are studied numerically in the case when the wave dispersion due to charge separation is negligible. It is also shown that a transition from monotonic to oscillatory shocks occurs by the effects of the quantum parameter H.

Suggested Citation

  • Misra, A.P. & Sahu, Biswajit, 2015. "Multidimensional ion-acoustic solitary waves and shocks in quantum plasmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 269-278.
  • Handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:269-278
    DOI: 10.1016/j.physa.2014.11.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114010036
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.11.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:269-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.