IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v416y2014icp1-20.html
   My bibliography  Save this article

Generalized Lagrangian dynamics of physical and non-physical systems

Author

Listed:
  • Sandler, U.

Abstract

In this paper, we show how to study the evolution of a complex system, given imprecise knowledge about the state of the system and the dynamics laws. It will be shown that dynamics of these systems is equivalent to Lagrangian (or Hamiltonian) mechanics in a n+1-dimensional space, where n is a system’s dimensionality. In some cases, however, the corresponding Lagrangian is more general than the usual one and could depend on the action. In this case, Lagrange’s equations gain a non-zero right side proportional to the derivative of the Lagrangian with respect to the action. Examples of such systems are unstable systems, systems with dissipation and systems which can remember their history. Moreover, in certain situations, the Lagrangian could be a set-valued function. The corresponding equations of motion then become differential inclusions instead of differential equations. We will also show that the principal of least action is a consequence of the causality principle and the local topology of the state space and not an independent axiom of classical mechanics.

Suggested Citation

  • Sandler, U., 2014. "Generalized Lagrangian dynamics of physical and non-physical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 1-20.
  • Handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:1-20
    DOI: 10.1016/j.physa.2014.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114006943
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandler, U. & Tsitolovsky, L., 2017. "The S-Lagrangian and a theory of homeostasis in living systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 540-553.
    2. Sandler, U., 2023. "Evolutionary quantization and matter-antimatter distribution in accelerated expanding of Universe," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    3. Sandler, U., 2017. "S-Lagrangian dynamics of many-body systems and behavior of social groups: Dominance and hierarchy formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 218-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.