IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v415y2014icp544-556.html
   My bibliography  Save this article

A generalized theory of preferential linking

Author

Listed:
  • Hu, Haibo
  • Guo, Jinli
  • Liu, Xuan
  • Wang, Xiaofan

Abstract

There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals’ behaviors and the global organization of social networks.

Suggested Citation

  • Hu, Haibo & Guo, Jinli & Liu, Xuan & Wang, Xiaofan, 2014. "A generalized theory of preferential linking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 544-556.
  • Handle: RePEc:eee:phsmap:v:415:y:2014:i:c:p:544-556
    DOI: 10.1016/j.physa.2014.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007043
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Rui & Xu, Ke & Zhao, Jichang, 2018. "An agent-based model for emotion contagion and competition in online social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 245-259.
    2. Li, Bo & Sun, Duoyong & Bai, Guanghan, 2017. "Empirical research on evolutionary behavior of covert network with preference measurement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 33-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:415:y:2014:i:c:p:544-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.