IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v415y2014icp538-543.html
   My bibliography  Save this article

Fractals and self-organized criticality in anti-inflammatory drugs

Author

Listed:
  • Phillips, J.C.

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX-1 and COX-2) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective inhibitors. Extensive structural studies of the biology of prostaglandin synthesis and inhibition have explained some of the differences between COX-1 and COX-2 functionality, but others are still unexplained. Notably these include molecular differences that cause COX-1 inhibitors to produce a slight decrease, and COX-2 inhibitors to induce a significant increase, in heart attacks and strokes. These differences were unexpected because of the 60% overall COX-1 and COX-2 sequence similarity and the 1–2 conservation of catalytic sites. Hydropathic analysis shows important bicyclic differences between COX-1 and COX-2 on a large scale outside the catalytic pocket. These differences involve much stronger amphiphilic interactions in COX-2 than in COX-1, and may explain the selective antiplatelet effectiveness of COX-2. Success of the non-Euclidean structural analysis is the result of using the new Brazilian hydropathicity scale based on self-organized criticality (SOC) of universal protein modules.

Suggested Citation

  • Phillips, J.C., 2014. "Fractals and self-organized criticality in anti-inflammatory drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 538-543.
  • Handle: RePEc:eee:phsmap:v:415:y:2014:i:c:p:538-543
    DOI: 10.1016/j.physa.2014.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007109
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sachdeva, Vedant & Phillips, James C., 2016. "Oxygen channels and fractal wave–particle duality in the evolution of myoglobin and neuroglobin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 1-11.
    2. Phillips, J.C., 2017. "Giant hub Src and Syk tyrosine kinase thermodynamic profiles recapitulate evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 330-336.
    3. Rostamian, Hossein & Lotfollahi, Mohammad Nader, 2020. "Statistical modeling of aspirin solubility in organic solvents by Response Surface Methodology and Artificial Neural Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Phillips, J.C., 2021. "Synchronized attachment and the Darwinian evolution of coronaviruses CoV-1 and CoV-2," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Phillips, J.C., 2016. "Autoantibody recognition mechanisms of p53 epitopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 162-170.
    6. Phillips, J.C., 2016. "Bioinformatic scaling of allosteric interactions in biomedical isozymes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 289-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:415:y:2014:i:c:p:538-543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.