IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v414y2014icp240-248.html
   My bibliography  Save this article

Magnetic hierarchical deposition

Author

Listed:
  • Posazhennikova, Anna I.
  • Indekeu, Joseph O.

Abstract

We consider random deposition of debris or blocks on a line, with block sizes following a rigorous hierarchy: the linear size equals 1/λn in generation n, in terms of a rescaling factor λ. Without interactions between the blocks, this model is described by a logarithmic fractal, studied previously, which is characterized by a constant increment of the length, area or volume upon proliferation. We study to what extent the logarithmic fractality survives, if each block is equipped with an Ising (pseudo-)spin s=±1 and the interactions between those spins are switched on (ranging from antiferromagnetic to ferromagnetic). It turns out that the dependence of the surface topology on the interaction sign and strength is not trivial. For instance, deep in the ferromagnetic regime, our numerical experiments and analytical results reveal a sharp crossover from a Euclidean transient, consisting of aggregated domains of aligned spins, to an asymptotic logarithmic fractal growth. In contrast, deep into the antiferromagnetic regime the surface roughness is important and is shown analytically to be controlled by vacancies induced by frustrated spins. Finally, in the weak interaction regime, we demonstrate that the non-interacting model is extremal in the sense that the effect of the introduction of interactions is only quadratic in the magnetic coupling strength. In all regimes, we demonstrate the adequacy of a mean-field approximation whenever vacancies are rare. In sum, the logarithmic fractal character is robust with respect to the introduction of spatial correlations in the hierarchical deposition process.

Suggested Citation

  • Posazhennikova, Anna I. & Indekeu, Joseph O., 2014. "Magnetic hierarchical deposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 240-248.
  • Handle: RePEc:eee:phsmap:v:414:y:2014:i:c:p:240-248
    DOI: 10.1016/j.physa.2014.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114005962
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berx, Jonas & Bervoets, Evi & Giuraniuc, Claudiu V. & Indekeu, Joseph O., 2021. "Coastlines and percolation in a model for hierarchical random deposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:414:y:2014:i:c:p:240-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.