IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v414y2014icp143-153.html
   My bibliography  Save this article

Potts model partition functions on two families of fractal lattices

Author

Listed:
  • Gong, Helin
  • Jin, Xian’an

Abstract

The partition function of q-state Potts model, or equivalently the Tutte polynomial, is computationally intractable for regular lattices. The purpose of this paper is to compute partition functions of q-state Potts model on two families of fractal lattices. Based on their self-similar structures and by applying the subgraph-decomposition method, we divide their Tutte polynomials into two summands, and for each summand we obtain a recursive formula involving the other summand. As a result, the number of spanning trees and their asymptotic growth constants, and a lower bound of the number of connected spanning subgraphs or acyclic root-connected orientations for each of such two lattices are obtained.

Suggested Citation

  • Gong, Helin & Jin, Xian’an, 2014. "Potts model partition functions on two families of fractal lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 143-153.
  • Handle: RePEc:eee:phsmap:v:414:y:2014:i:c:p:143-153
    DOI: 10.1016/j.physa.2014.07.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114006190
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.07.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liao, Yunhua & Fang, Aixiang & Hou, Yaoping, 2013. "The Tutte polynomial of an infinite family of outerplanar, small-world and self-similar graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4584-4593.
    2. Chang, Shu-Chiuan & Shrock, Robert, 2001. "Exact Potts model partition functions on wider arbitrary-length strips of the square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(1), pages 234-288.
    3. Chang, Shu-Chiuan & Shrock, Robert, 2001. "Exact Potts model partition functions on strips of the honeycomb lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 296(1), pages 183-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Helin & Jin, Xian’an, 2017. "A general method for computing Tutte polynomials of self-similar graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 117-129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Helin & Jin, Xian’an, 2017. "A general method for computing Tutte polynomials of self-similar graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 117-129.
    2. Chang, Shu-Chiuan & Shrock, Robert, 2020. "Asymptotic behavior of acyclic and cyclic orientations of directed lattice graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Park, Jae-Hyun, 2017. "Time-dependent reliability of wireless networks with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 47-61.
    4. Alfaro, Carlos A. & Villagrán, Ralihe R., 2021. "The structure of sandpile groups of outerplanar graphs," Applied Mathematics and Computation, Elsevier, vol. 395(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:414:y:2014:i:c:p:143-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.