IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v412y2014icp66-83.html
   My bibliography  Save this article

Discrete element modeling of the microstructure of fine particle agglomerates in sheared dilute suspension

Author

Listed:
  • Kimbonguila Manounou, A.
  • Rémond, S.

Abstract

The fragmentation and restructuring under shear of agglomerates of fine mineral particles are studied with the Distinct Element Method. The model used takes into account contact forces, van der Waals forces, and hydrodynamic forces computed with the free-draining approximation. A loose initial agglomerate is submitted to a constant shear rate until reaching a quasi-stationary state, where the number, size and structure of fragment of agglomerates can be considered as constant. The influence of shear stress and size of particles on the characteristics of agglomerates at equilibrium is studied. Fragmentation is controlled by a non-dimensional number, depending on the radius of the particles, shear rate and maximal adhesion force.

Suggested Citation

  • Kimbonguila Manounou, A. & Rémond, S., 2014. "Discrete element modeling of the microstructure of fine particle agglomerates in sheared dilute suspension," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 66-83.
  • Handle: RePEc:eee:phsmap:v:412:y:2014:i:c:p:66-83
    DOI: 10.1016/j.physa.2014.06.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114004889
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.06.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Cheikh, K. & Rémond, S., 2017. "Effect of wall bumpiness on the behavior of sheared dry bidisperse granular material," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 1-12.
    2. Sébastien Rémond & Mohamed El Karim Bouarroudj, 2022. "A Numerical Model for the Optimization of Concentrated Suspensions for Sustainable Concrete Proportioning," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    3. El Cheikh, Khadija & Rémond, Sébastien & Pizette, Patrick & Vanhove, Yannick & Djelal, Chafika, 2016. "Discrete Element study of granular material — Bumpy wall interface behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 526-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:412:y:2014:i:c:p:66-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.