IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v407y2014icp245-251.html
   My bibliography  Save this article

Spontaneous generation of a crystalline ground state in a higher derivative theory

Author

Listed:
  • Ghosh, Subir

Abstract

The possibility of Spontaneous Symmetry Breaking in momentum space in a generic Lifshitz scalar model–a non-relativistic scalar field theory with higher spatial derivative terms–has been studied. We show that the minimum energy state, the ground state, has a lattice structure, where the translation invariance of the continuum theory is reduced to a discrete translation symmetry. The scale of translation symmetry breaking (or induced lattice spacing) is proportional to the inverse of the momentum of the condensate particle. The crystalline ground state is stable under excitations below a certain critical velocity. The small fluctuations above the ground state can have a phonon like dispersion under suitable choice of parameters.

Suggested Citation

  • Ghosh, Subir, 2014. "Spontaneous generation of a crystalline ground state in a higher derivative theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 245-251.
  • Handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:245-251
    DOI: 10.1016/j.physa.2014.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114003161
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aerts, Diederik & Czachor, Marek & Kuna, Maciej, 2016. "Crystallization of space: Space-time fractals from fractal arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 201-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:245-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.