IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v407y2014icp231-244.html
   My bibliography  Save this article

Analysis of diffusion and trapping efficiency for random walks on non-fractal scale-free trees

Author

Listed:
  • Peng, Junhao
  • Xiong, Jian
  • Xu, Guoai

Abstract

In this paper, the discrete random walks on the recursive non-fractal scale-free trees (NFSFT) are studied, and a kind of method to calculate the analytic solutions of the mean first-passage time (MFPT) for any pair of nodes, the mean trapping time (MTT) for any target node and mean diffusing time (MDT) for any starting node are proposed. Furthermore, we compare the trapping efficiency and diffusion efficiency between any two nodes of NFSFT by using the MTT and the MDT as the measures of trapping efficiency and diffusion efficiency respectively, and find the best (or worst) trapping sites and the best (or worst) diffusion sites. The results show that the two hubs of NFSFT are not only the best trapping site but also the worst diffusion site, and that the nodes which are the farthest nodes from the two hubs are not only the worst trapping sites but also the best diffusion sites. Furthermore, we find that the ratio between the maximum and minimum of MTT grows logarithmically with network order, but the ratio between the maximum and minimum of MDT is almost equal to 1. The results imply that the trap’s position has great effect on the trapping efficiency, but the position of starting node has little effect on diffusion efficiency. Finally, the simulation for random walks on NFSFT is done, and it is consistent with the derived results.

Suggested Citation

  • Peng, Junhao & Xiong, Jian & Xu, Guoai, 2014. "Analysis of diffusion and trapping efficiency for random walks on non-fractal scale-free trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 231-244.
  • Handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:231-244
    DOI: 10.1016/j.physa.2014.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114003288
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    MFPT; MTT; MDT;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:407:y:2014:i:c:p:231-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.