IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v406y2014icp236-243.html
   My bibliography  Save this article

Enumeration of spanning trees in planar unclustered networks

Author

Listed:
  • Xiao, Yuzhi
  • Zhao, Haixing
  • Hu, Guona
  • Ma, Xiujuan

Abstract

Among a variety of subgraphs, spanning trees are one of the most important and fundamental categories. They are relevant to diverse aspects of networks, including reliability, transport, self-organized criticality, loop-erased random walks and so on. In this paper, we introduce a family of modular, self-similar planar networks with zero clustering. Relevant properties of this family are comparable to those networks associated with technological systems having low clustering, like power grids, some electronic circuits, the Internet and some biological systems. So, it is very significant to research on spanning trees of planar networks. However, for a large network, evaluating the relevant determinant is intractable. In this paper, we propose a fairly generic linear algorithm for counting the number of spanning trees of a planar network. Using the algorithm, we derive analytically the exact numbers of spanning trees in planar networks. Our result shows that the computational complexity is O(t), which is better than that of the matrix tree theorem with O(m2t2), where t is the number of steps and m is the girth of the planar network. We also obtain the entropy for the spanning trees of a given planar network. We find that the entropy of spanning trees in the studied network is small, which is in sharp contrast to the previous result for planar networks with the same average degree. We also determine an upper bound and a lower bound for the numbers of spanning trees in the family of planar networks by the algorithm. As another application of the algorithm, we give a formula for the number of spanning trees in an outerplanar network with small-world features.

Suggested Citation

  • Xiao, Yuzhi & Zhao, Haixing & Hu, Guona & Ma, Xiujuan, 2014. "Enumeration of spanning trees in planar unclustered networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 236-243.
  • Handle: RePEc:eee:phsmap:v:406:y:2014:i:c:p:236-243
    DOI: 10.1016/j.physa.2014.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114002234
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Yun & Tian, Qing & Guo, Jianhua & Huang, Wei & Cao, Jinde, 2019. "Multi-vehicle detection algorithm through combining Harr and HOG features," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 130-145.
    2. Sun, Daoqiang & Li, Long & Liu, Kai & Wang, Hua & Yang, Yu, 2022. "Enumeration of subtrees of planar two-tree networks," Applied Mathematics and Computation, Elsevier, vol. 434(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:406:y:2014:i:c:p:236-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.