IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v395y2014icp154-170.html
   My bibliography  Save this article

On the equivalence of thermodynamics ensembles for flexible polymer chains

Author

Listed:
  • Manca, Fabio
  • Giordano, Stefano
  • Palla, Pier Luca
  • Cleri, Fabrizio

Abstract

Although the problem of the ensembles equivalence for flexible polymers has aroused considerable interest, there is not an overall consensus on this topic. In this work, we present a theoretical investigation on the asymptotic equivalence of two ensembles for single flexible polymer chains (without confinement effects, i.e. fluctuating in the entire space): the first is the Gibbs (or isotensional) ensemble with one end-terminal of the chain tethered to a given point and the other subjected to an applied force; the other ensemble is the Helmholtz (or isometric) one characterized by both terminals tethered to fixed points. The equivalence property is rigorously proved for a class of potentials characterized by a continuous pairing interaction between neighboring monomers. To approach the problem we adopted an original analytical formalism based on the stationary phase technique and on the exact determination of the eigenvalues sign of the Hessian matrix of the phase function. To give some examples of application, the general result is successively applied to freely-jointed chains, to flexible polymers with extensible bonds and to chains with domains that exhibit conformational transitions between two stable states.

Suggested Citation

  • Manca, Fabio & Giordano, Stefano & Palla, Pier Luca & Cleri, Fabrizio, 2014. "On the equivalence of thermodynamics ensembles for flexible polymer chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 154-170.
  • Handle: RePEc:eee:phsmap:v:395:y:2014:i:c:p:154-170
    DOI: 10.1016/j.physa.2013.10.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113010145
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.10.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:395:y:2014:i:c:p:154-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.