IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v393y2014icp37-50.html
   My bibliography  Save this article

Monte Carlo studies of a Finsler geometric surface model

Author

Listed:
  • Koibuchi, Hiroshi
  • Sekino, Hideo

Abstract

This paper presents a new type of surface models constructed on the basis of Finsler geometry. A Finsler metric is defined on the surface by using an underlying vector field, which is an in-plane tilt order. According to the orientation of the vector field, the Finsler length becomes dependent on both position and direction on the surface, and for this reason the parameters such as the surface tension and bending rigidity become anisotropic. To confirm that the model is well-defined, we perform Monte Carlo simulations under several isotropic conditions such as those given by random vector fields. The results are comparable to those of previous simulations of the conventional model. It is also found that a tubular phase appears when the vector field is constant. Moreover, we find that the tilts form the Kosterlitz–Thouless and low temperature configurations, which correspond to two different anisotropic phases such as disk and tubular, in the model in which the tilt variable is assumed to be a dynamical variable. This confirms that the model in this paper may be used as an anisotropic model for membranes.

Suggested Citation

  • Koibuchi, Hiroshi & Sekino, Hideo, 2014. "Monte Carlo studies of a Finsler geometric surface model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 37-50.
  • Handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:37-50
    DOI: 10.1016/j.physa.2013.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113007176
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:37-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.