IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i24p6561-6570.html
   My bibliography  Save this article

A thermodynamic counterpart of the Axelrod model of social influence: The one-dimensional case

Author

Listed:
  • Gandica, Y.
  • Medina, E.
  • Bonalde, I.

Abstract

We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytically calculate thermodynamic and critical properties for a 1D system and show that an order–disorder phase transition only occurs at T=0 independent of the number of cultural traits q and features F. The 1D thermodynamic Axelrod model belongs to the same universality class of the Ising and Potts models, notwithstanding the increase of the internal dimension of the local degree of freedom and the state-dependent bonding interaction. We suggest a unifying proposal to compare exponents across different discrete 1D models. The comparison with our Hamiltonian description reveals that in the thermodynamic limit the original out-of-equilibrium 1D Axelrod model with noise behaves like an ordinary thermodynamic 1D interacting particle system.

Suggested Citation

  • Gandica, Y. & Medina, E. & Bonalde, I., 2013. "A thermodynamic counterpart of the Axelrod model of social influence: The one-dimensional case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6561-6570.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:24:p:6561-6570
    DOI: 10.1016/j.physa.2013.08.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113007620
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.08.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raducha, Tomasz & Gubiec, Tomasz, 2017. "Coevolving complex networks in the model of social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 427-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:24:p:6561-6570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.