IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i19p4203-4209.html
   My bibliography  Save this article

Effects of colored noise and noise delay on a calcium oscillation system

Author

Listed:
  • Wang, Bing
  • Yin, Zhixiang

Abstract

As a calcium oscillations system is in steady state, the effects of colored noise and noise delay on the system is investigated using stochastic simulation methods. The results indicate that: (1) the colored noise can induce coherence bi-resonance phenomenon. (2) there exist three peaks in the R–τ0 (R is the reciprocal coefficient of variance, and τ0 is the self-correlation time of the colored noise) curves. For the same noise intensity Q=1, the Gaussian colored noise can induce calcium spikes but the white noise cannot do this. (3) the delay time can improve noise induced spikes regularity as τ0 is small, and R has a significant minimum with increasing τ as τ0 is large. (4) large values of ζ reduce noise induced spikes regularity.

Suggested Citation

  • Wang, Bing & Yin, Zhixiang, 2013. "Effects of colored noise and noise delay on a calcium oscillation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4203-4209.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:19:p:4203-4209
    DOI: 10.1016/j.physa.2013.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113004391
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chendur Kumaran, R. & Venkatesh, T.G. & Swarup, K.S., 2022. "Stochastic delay differential equations: Analysis and simulation studies," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:19:p:4203-4209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.