IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i17p3846-3855.html
   My bibliography  Save this article

The spreading of opposite opinions on online social networks with authoritative nodes

Author

Listed:
  • Yan, Shu
  • Tang, Shaoting
  • Pei, Sen
  • Jiang, Shijin
  • Zhang, Xiao
  • Ding, Wenrui
  • Zheng, Zhiming

Abstract

The study of opinion dynamics, such as spreading and controlling of rumors, has become an important issue on social networks. Numerous models have been devised to describe this process, including epidemic models and spin models, which mainly focus on how opinions spread and interact with each other, respectively. In this paper, we propose a model that combines the spreading stage and the interaction stage for opinions to illustrate the process of dispelling a rumor. Moreover, we set up authoritative nodes, which disseminate positive opinion to counterbalance the negative opinion prevailing on online social networking sites. With analysis of the relationship among positive opinion proportion, opinion strength and the density of authoritative nodes in networks with different topologies, we demonstrate that the positive opinion proportion grows with the density of authoritative nodes until the positive opinion prevails in the entire network. In particular, the relationship is linear in homogeneous topologies. Besides, it is also noteworthy that initial locations of the negative opinion source and authoritative nodes do not influence positive opinion proportion in homogeneous networks but have a significant impact on heterogeneous networks. The results are verified by numerical simulations and are helpful to understand the mechanism of two different opinions interacting with each other on online social networking sites.

Suggested Citation

  • Yan, Shu & Tang, Shaoting & Pei, Sen & Jiang, Shijin & Zhang, Xiao & Ding, Wenrui & Zheng, Zhiming, 2013. "The spreading of opposite opinions on online social networks with authoritative nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3846-3855.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:17:p:3846-3855
    DOI: 10.1016/j.physa.2013.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113003312
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Nairong & An, Haizhong & Gao, Xiangyun & Li, Huajiao & Hao, Xiaoqing, 2016. "Breaking news dissemination in the media via propagation behavior based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 44-54.
    2. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2018. "Rumor and authoritative information propagation model considering super spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 395-411.
    3. Chen, Yahong & Li, Jinlin & Huang, He & Ran, Lun & Hu, Yusheng, 2017. "Encouraging information sharing to boost the name-your-own-price auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 108-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:17:p:3846-3855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.