IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i15p3248-3259.html
   My bibliography  Save this article

What is the difference of research collaboration network under different projections: Topological measurement and analysis

Author

Listed:
  • Li, Yongjun
  • You, Chun

Abstract

Research collaboration network is a typical bipartite network that consists of papers and authors. This bipartite network could be transformed into one-mode networks by projection. In this paper, we used three different projections to construct three co-authorship networks. Topological features of three co-authorship networks are measured and analyzed in order to understand the influence of projections on network features. The measurement results show that different projections could lead to different topological features. Therefore, to reflect the existing reality more precisely, projection method is suggested to be considered when we investigate the structure of scientific collaborations and/or assess the status, impact and influence of researchers and their institutions.

Suggested Citation

  • Li, Yongjun & You, Chun, 2013. "What is the difference of research collaboration network under different projections: Topological measurement and analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3248-3259.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:15:p:3248-3259
    DOI: 10.1016/j.physa.2013.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113002380
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardillo, Alessio & Scellato, Salvatore & Latora, Vito, 2006. "A topological analysis of scientific coauthorship networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(2), pages 333-339.
    2. Holme, Petter & Min Park, Sung & Kim, Beom Jun & Edling, Christofer R., 2007. "Korean university life in a network perspective: Dynamics of a large affiliation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 821-830.
    3. Li, Menghui & Fan, Ying & Chen, Jiawei & Gao, Liang & Di, Zengru & Wu, Jinshan, 2005. "Weighted networks of scientific communication: the measurement and topological role of weight," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 643-656.
    4. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leifeld, Philip, 2018. "Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 510-523.
    2. Arthur, Rudy, 2020. "Modularity and projection of bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Rodica Ioana Lung & Noémi Gaskó & Mihai Alexandru Suciu, 2018. "A hypergraph model for representing scientific output," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1361-1379, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2018. "Identifying important scholars via directed scientific collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1327-1343, March.
    2. Takao Furukawa & Nobuyuki Shirakawa & Kumi Okuwada, 2011. "Quantitative analysis of collaborative and mobility networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 451-466, June.
    3. Leifeld, Philip, 2018. "Polarization in the social sciences: Assortative mixing in social science collaboration networks is resilient to interventions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 510-523.
    4. Marian-Gabriel Hâncean & Matjaž Perc & Lazăr Vlăsceanu, 2014. "Fragmented Romanian Sociology: Growth and Structure of the Collaboration Network," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    5. Noémi Gaskó & Rodica Ioana Lung & Mihai Alexandru Suciu, 2016. "A new network model for the study of scientific collaborations: Romanian computer science and mathematics co-authorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 613-632, August.
    6. Lemarchand, Guillermo A., 2012. "The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010)," Research Policy, Elsevier, vol. 41(2), pages 291-305.
    7. Ann Bostrom & Ragnar E. Löfstedt, 2003. "Communicating Risk: Wireless and Hardwired," Risk Analysis, John Wiley & Sons, vol. 23(2), pages 241-248, April.
    8. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    9. de Oliveira, Thaiane Moreira & de Albuquerque, Sofia & Toth, Janderson Pereira & Bello, Debora Zava, 2018. "International cooperation networks of the BRICS bloc," SocArXiv b6x43, Center for Open Science.
    10. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    11. Elias Carroni & Paolo Pin & Simone Righi, 2020. "Bring a Friend! Privately or Publicly?," Management Science, INFORMS, vol. 66(5), pages 2269-2290, May.
    12. Jin, Jiashun & Ke, Zheng Tracy & Luo, Shengming, 2024. "Mixed membership estimation for social networks," Journal of Econometrics, Elsevier, vol. 239(2).
    13. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    14. Andreas Spitz & Emőke-Ágnes Horvát, 2014. "Measuring Long-Term Impact Based on Network Centrality: Unraveling Cinematic Citations," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    15. Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    16. Georg Groh & Christoph Fuchs, 2011. "Multi-modal social networks for modeling scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 569-590, November.
    17. Sameer Kumar & Kuru Ratnavelu, 2016. "Perceptions of Scholars in the Field of Economics on Co-Authorship Associations: Evidence from an International Survey," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-18, June.
    18. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    19. Zhengzheng Pan, 2012. "Opinions and Networks: How Do They Effect Each Other," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 157-171, February.
    20. Chakraborty, Tanmoy & Tammana, Vihar & Ganguly, Niloy & Mukherjee, Animesh, 2015. "Understanding and modeling diverse scientific careers of researchers," Journal of Informetrics, Elsevier, vol. 9(1), pages 69-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:15:p:3248-3259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.