IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i12p2775-2780.html
   My bibliography  Save this article

Menzerath–Altmann law for distinct word distribution analysis in a large text

Author

Listed:
  • Eroglu, Sertac

Abstract

The empirical law uncovered by Menzerath and formulated by Altmann, known as the Menzerath–Altmann law (henceforth the MA law), reveals the statistical distribution behavior of human language in various organizational levels. Building on previous studies relating organizational regularities in a language, we propose that the distribution of distinct (or different) words in a large text can effectively be described by the MA law. The validity of the proposition is demonstrated by examining two text corpora written in different languages not belonging to the same language family (English and Turkish). The results show not only that distinct word distribution behavior can accurately be predicted by the MA law, but that this result appears to be language-independent. This result is important not only for quantitative linguistic studies, but also may have significance for other naturally occurring organizations that display analogous organizational behavior. We also deliberately demonstrate that the MA law is a special case of the probability function of the generalized gamma distribution.

Suggested Citation

  • Eroglu, Sertac, 2013. "Menzerath–Altmann law for distinct word distribution analysis in a large text," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2775-2780.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:12:p:2775-2780
    DOI: 10.1016/j.physa.2013.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113001702
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:12:p:2775-2780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.