IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i10p2447-2459.html
   My bibliography  Save this article

Rating the raters in a mixed model: An approach to deciphering the rater reliability

Author

Listed:
  • Shang, Junfeng
  • Wang, Yougui

Abstract

Rating the raters has attracted extensive attention in recent years. Ratings are quite complex in that the subjective assessment and a number of criteria are involved in a rating system. Whenever the human judgment is a part of ratings, the inconsistency of ratings is the source of variance in scores, and it is therefore quite natural for people to verify the trustworthiness of ratings. Accordingly, estimation of the rater reliability will be of great interest and an appealing issue. To facilitate the evaluation of the rater reliability in a rating system, we propose a mixed model where the scores of the ratees offered by a rater are described with the fixed effects determined by the ability of the ratees and the random effects produced by the disagreement of the raters. In such a mixed model, for the rater random effects, we derive its posterior distribution for the prediction of random effects. To quantitatively make a decision in revealing the unreliable raters, the predictive influence function (PIF) serves as a criterion which compares the posterior distributions of random effects between the full data and rater-deleted data sets. The benchmark for this criterion is also discussed. This proposed methodology of deciphering the rater reliability is investigated in the multiple simulated and two real data sets.

Suggested Citation

  • Shang, Junfeng & Wang, Yougui, 2013. "Rating the raters in a mixed model: An approach to deciphering the rater reliability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2447-2459.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:10:p:2447-2459
    DOI: 10.1016/j.physa.2013.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113000952
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Yi-Kuo & Zhang, Yi-Cheng & Laureti, Paolo & Moret, Lionel, 2006. "Decoding information from noisy, redundant, and intentionally distorted sources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 732-744.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ausloos, Marcel & Cerqueti, Roy & Bartolacci, Francesca & Castellano, Nicola G., 2018. "SME investment best strategies. Outliers for assessing how to optimize performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 754-765.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Liao & An Zeng & Rui Xiao & Zhuo-Ming Ren & Duan-Bing Chen & Yi-Cheng Zhang, 2014. "Ranking Reputation and Quality in Online Rating Systems," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:10:p:2447-2459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.