IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i4p1887-1893.html
   My bibliography  Save this article

Traffic dynamics in scale-free networks with tunable strength of community structure

Author

Listed:
  • Zhou, Ming-yang
  • Cai, Shi-min
  • Fu, Zhong-qian

Abstract

In this paper we systematically investigate the impact of community structure on traffic dynamics in scale-free networks based on local routing strategy. A growth model is introduced to construct scale-free networks with tunable strength of community structure, and a packet routing strategy with a parameter α is used to deal with the navigation and transportation of packets simultaneously. Simulations show that the maximal network capacity stands at α=−1 in the case of identical vertex capacity and monotonously decreases with the strength of community structure which suggests that the networks with fuzzy community structure (i.e., community strength is weak) are more efficient in delivering packets than those with pronounced community structure. To explain these results, the distribution of packets of each vertex is carefully studied. Our results indicate that the moderate strength of community structure is more convenient for the information transfer of real complex systems.

Suggested Citation

  • Zhou, Ming-yang & Cai, Shi-min & Fu, Zhong-qian, 2012. "Traffic dynamics in scale-free networks with tunable strength of community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1887-1893.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1887-1893
    DOI: 10.1016/j.physa.2011.10.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111008260
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.10.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yi-Jia & Kuo, Yong-Hong & Huang, George Q. & Gu, Weihua & Hu, Yaohua, 2022. "Dynamic demand-driven bike station clustering," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1887-1893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.