IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i4p1652-1656.html
   My bibliography  Save this article

The KdV–Burgers equation in speed gradient viscous continuum model

Author

Listed:
  • Ge, Hong-Xia
  • Lo, Siu-ming

Abstract

Based on the microscopic two velocity difference model, a macroscopic model called speed viscous continuum model is developed to describe traffic flow. The relative velocities are added to the motion equation, which leads to viscous effects in continuum model. The viscous continuum model overcomes the backward travel problem, which exists in many higher-order continuum models. Nonlinear analysis shows that the density fluctuation in traffic flow leads to density waves. Near the onset of instability, a small disturbance could lead to solitons described by the Korteweg–de Vries–Burgers (KdV–Burgers) equation, which is seldom found in other traffic flow models, and the soliton solution is derived.

Suggested Citation

  • Ge, Hong-Xia & Lo, Siu-ming, 2012. "The KdV–Burgers equation in speed gradient viscous continuum model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1652-1656.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1652-1656
    DOI: 10.1016/j.physa.2011.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111007941
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chuan-Yao & Huang, Hai-Jun & Tang, Tie-Qiao, 2017. "Analysis of user equilibrium for staggered shifts in a single-entry traffic corridor with no late arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 8-18.
    2. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1652-1656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.