IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i3p544-551.html
   My bibliography  Save this article

H-theorems for the Brownian motion on the hyperbolic plane

Author

Listed:
  • Vignat, C.
  • Lamberti, P.W.

Abstract

We study H-theorems associated with the Brownian motion with constant drift on the hyperbolic plane. Since this random process satisfies a linear Fokker–Planck equation, it is easy to show that, up to a proper scaling, its Shannon entropy is increasing over time. As a consequence, its distribution is converging to a maximum Shannon entropy distribution which is also shown to be related to the non-extensive statistics. In a second part, relying on a theorem by Shiino, we extend this result to the case of Tsallis entropies: we show that under a variance-like constraint, the Tsallis entropy of the Brownian motion on the hyperbolic plane is increasing provided that the non-extensivity parameter of this entropy is properly chosen in terms of the drift of the Brownian motion.

Suggested Citation

  • Vignat, C. & Lamberti, P.W., 2012. "H-theorems for the Brownian motion on the hyperbolic plane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 544-551.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:3:p:544-551
    DOI: 10.1016/j.physa.2011.08.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111007151
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.08.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Plastino, A.R. & Plastino, A., 1995. "Non-extensive statistical mechanics and generalized Fokker-Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 222(1), pages 347-354.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, A.P.P. & Fernandes, J.P. & Atman, A.P.F. & Acebal, J.L., 2018. "Parameter calibration between models and simulations: Connecting linear and non-linear descriptions of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 369-382.
    2. Ván, P, 2004. "One- and two-component fluids: restrictions from the Second Law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 418-426.
    3. Ván, P., 2006. "Unique additive information measures—Boltzmann–Gibbs–Shannon, Fisher and beyond," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(1), pages 28-33.
    4. Lenzi, E.K. & Ribeiro, M.A. & Fuziki, M.E.K. & Lenzi, M.K. & Ribeiro, H.V., 2018. "Nonlinear diffusion equation with reaction terms: Analytical and numerical results," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 254-265.
    5. Moretto, Enrico & Pasquali, Sara & Trivellato, Barbara, 2016. "Option pricing under deformed Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 246-263.
    6. Secrest, J.A. & Conroy, J.M. & Miller, H.G., 2020. "A unified view of transport equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    7. dos Santos, M.A.F. & Colombo, E.H. & Anteneodo, C., 2021. "Random diffusivity scenarios behind anomalous non-Gaussian diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Rodrigues, Ana Flávia P. & Cavalcante, Charles C. & Crisóstomo, Vicente L., 2019. "A projection pricing model for non-Gaussian financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    9. Ji, Lina, 2012. "Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion equations with source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6320-6331.
    10. Tawfik, Ashraf M. & Elkamash, I.S., 2022. "On the correlation between Kappa and Lévy stable distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    11. Kalogeropoulos, Nikolaos, 2020. "Toward a relative q-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Tsallis, Constantino, 1995. "Non-extensive thermostatistics: brief review and comments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 221(1), pages 277-290.
    13. da Silva, Sérgio Luiz Eduardo Ferreira & da Costa, Carlos A.N. & Carvalho, Pedro Tiago C. & de Araújo, João Medeiros & dos Santos Lucena, Liacir & Corso, Gilberto, 2020. "Robust full-waveform inversion using q-statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:3:p:544-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.