IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i24p6655-6663.html
   My bibliography  Save this article

Transition from the self-organized to the driven dynamical clusters

Author

Listed:
  • Singh, Aradhana
  • Jalan, Sarika

Abstract

We study the mechanism of formation of synchronized clusters in coupled maps on networks with various connection architectures. The nodes in a cluster are self-synchronized or driven-synchronized, based on the coupling strength and underlying network structures. A smaller coupling strength region shows driven clusters independent of the network rewiring strategies, whereas a larger coupling strength region shows the transition from the self-organized cluster to the driven cluster as network connections are rewired to the bi-partite type. Lyapunov function analysis is performed to understand the dynamical origin of cluster formation. The results provide insights into the relationship between the topological clusters which are based on the direct connections between the nodes, and the dynamical clusters which are based on the functional behavior of these nodes.

Suggested Citation

  • Singh, Aradhana & Jalan, Sarika, 2012. "Transition from the self-organized to the driven dynamical clusters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6655-6663.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6655-6663
    DOI: 10.1016/j.physa.2012.07.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112007248
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.07.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Aihua & Cao, Jinde & Hu, Manfeng & Guo, Liuxiao, 2014. "Cluster synchronization in directed networks of non-identical systems with noises via random pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 537-548.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6655-6663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.