IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i16p4128-4135.html
   My bibliography  Save this article

Temporal variations of serial correlations of trading volume in the US stock market

Author

Listed:
  • Alvarez-Ramírez, José
  • Rodríguez, Eduardo

Abstract

Serial correlations in the trading volume of the US stock market are investigated in this paper. The use of the detrended fluctuation analysis implemented within a rolling window indicated that, for the period 1929–2011, the strength of correlations exhibits important temporal variations with a trend shift by the 1990s, and 4-year and 21-year cycles. These empirical findings are compared to those obtained for mature international stock markets (FTSE-100 and Nikkei) and discussed in terms of potential economic and financial implications.

Suggested Citation

  • Alvarez-Ramírez, José & Rodríguez, Eduardo, 2012. "Temporal variations of serial correlations of trading volume in the US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4128-4135.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:16:p:4128-4135
    DOI: 10.1016/j.physa.2012.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112002828
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Górski, A.Z & Drożdż, S & Speth, J, 2002. "Financial multifractality and its subtleties: an example of DAX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 496-510.
    2. Brooks, Robin & Del Negro, Marco, 2004. "The rise in comovement across national stock markets: market integration or IT bubble?," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 659-680, December.
    3. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    4. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    5. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    6. M. Ayhan Kose & Eswar S. Prasad & Marco E. Terrones, 2003. "How Does Globalization Affect the Synchronization of Business Cycles?," American Economic Review, American Economic Association, vol. 93(2), pages 57-62, May.
    7. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    8. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    9. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    10. Grech, Dariusz & Pamuła, Grzegorz, 2008. "The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4299-4308.
    11. A. Z. Gorski & S. Drozdz & J. Speth, 2002. "Financial multifractality and its subtleties: an example of DAX," Papers cond-mat/0205482, arXiv.org.
    12. Kenneth R. French, 2008. "Presidential Address: The Cost of Active Investing," Journal of Finance, American Finance Association, vol. 63(4), pages 1537-1573, August.
    13. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    14. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    15. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-321, March.
    16. He, Hua & Wang, Jiang, 1995. "Differential Information and Dynamic Behavior of Stock Trading Volume," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 919-972.
    17. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    18. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    19. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
    20. Qiu, T. & Zhong, L.X. & Chen, G. & Wu, X.R., 2009. "Statistical properties of trading volume of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2427-2434.
    21. Romer, David, 1993. "Rational Asset-Price Movements without News," American Economic Review, American Economic Association, vol. 83(5), pages 1112-1130, December.
    22. Grinblatt, Mark & Titman, Sheridan & Wermers, Russ, 1995. "Momentum Investment Strategies, Portfolio Performance, and Herding: A Study of Mutual Fund Behavior," American Economic Review, American Economic Association, vol. 85(5), pages 1088-1105, December.
    23. Covrig, Vicentiu & Ng, Lilian, 2004. "Volume autocorrelation, information, and investor trading," Journal of Banking & Finance, Elsevier, vol. 28(9), pages 2155-2174, September.
    24. Jeremy C. Stein, 2009. "Presidential Address: Sophisticated Investors and Market Efficiency," Journal of Finance, American Finance Association, vol. 64(4), pages 1517-1548, August.
    25. Barclay, Michael J. & Warner, Jerold B., 1993. "Stealth trading and volatility : Which trades move prices?," Journal of Financial Economics, Elsevier, vol. 34(3), pages 281-305, December.
    26. H. Henry Cao & Joshua D. Coval & David Hirshleifer, 2002. "Sidelined Investors, Trading-Generated News, and Security Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(2), pages 615-648, March.
    27. Grau-Carles, Pilar, 2000. "Empirical evidence of long-range correlations in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 396-404.
    28. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
    29. de Groot, Bert & Franses, Philip Hans, 2012. "Common socio-economic cycle periods," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 59-68.
    30. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    31. Simon Kuznets, 1930. "Equilibrium Economics and Business-Cycle Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 44(3), pages 381-415.
    32. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dong-Hua & Suo, Yuan-Yuan & Yu, Xiao-Wen & Lei, Man, 2013. "Price–volume cross-correlation analysis of CSI300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1172-1179.
    2. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    3. Blau, Benjamin M. & Smith, Jason M., 2014. "Autocorrelation in daily short-sale volume," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(1), pages 31-41.
    4. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    5. Jinliang Li, 2016. "When noise trading fades, volatility rises," Review of Quantitative Finance and Accounting, Springer, vol. 47(3), pages 475-512, October.
    6. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    7. Wen-Ling Lin & Takatoshi Ito, 1994. "Price Volatility and Volume Spillovers between the Tokyo and New York Stock Markets," NBER Chapters, in: The Internationalization of Equity Markets, pages 309-343, National Bureau of Economic Research, Inc.
    8. Kausik Chaudhuri & Alok Kumar, 2015. "A Markov-Switching Model for Indian Stock Price and Volume," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(3), pages 239-257, December.
    9. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    10. Rodriguez, E. & Alvarez-Ramirez, J., 2021. "Time-varying cross-correlation between trading volume and returns in US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    11. Aris Kartsaklas, 2018. "Trader Type Effects On The Volatility‐Volume Relationship Evidence From The Kospi 200 Index Futures Market," Bulletin of Economic Research, Wiley Blackwell, vol. 70(3), pages 226-250, July.
    12. Covrig, Vicentiu & Ng, Lilian, 2004. "Volume autocorrelation, information, and investor trading," Journal of Banking & Finance, Elsevier, vol. 28(9), pages 2155-2174, September.
    13. Dimitris Papadimitriou, 2023. "Trading under uncertainty about other market participants," The Financial Review, Eastern Finance Association, vol. 58(2), pages 343-367, May.
    14. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    15. Ait-Sahalia, Yacine, 1998. "Dynamic equilibrium and volatility in financial asset markets," Journal of Econometrics, Elsevier, vol. 84(1), pages 93-127, May.
    16. Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2014. "Stylized facts of price gaps in limit order books: Evidence from Chinese stocks," Papers 1405.1247, arXiv.org.
    17. Shahzad, Hassan & Duong, Huu Nhan & Kalev, Petko S. & Singh, Harminder, 2014. "Trading volume, realized volatility and jumps in the Australian stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 414-430.
    18. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    19. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    20. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:16:p:4128-4135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.