IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i14p3657-3679.html
   My bibliography  Save this article

Kinetic theory of Onsager’s vortices in two-dimensional hydrodynamics

Author

Listed:
  • Chavanis, Pierre-Henri

Abstract

Starting from the Liouville equation and using a BBGKY-like hierarchy, we derive a kinetic equation for the point vortex gas in two-dimensional (2D) hydrodynamics, taking two-body correlations and collective effects into account. This equation is valid at the order 1/N where N≫1 is the number of point vortices in the system (we assume that their individual circulation scales like γ∼1/N). It gives the first correction, due to graininess and correlation effects, to the 2D Euler equation that is obtained for N→+∞. For axisymmetric distributions, this kinetic equation does not relax towards the Boltzmann distribution of statistical equilibrium. This implies either that (i) the “collisional” (correlational) relaxation time is larger than NtD, where tD is the dynamical time, so that three-body, four-body… correlations must be taken into account in the kinetic theory, or (ii) that the point vortex gas is non-ergodic (or does not mix well) and will never attain statistical equilibrium. Non-axisymmetric distributions may relax towards the Boltzmann distribution on a timescale of the order NtD due to the existence of additional resonances, but this is hard to prove from the kinetic theory. On the other hand, 2D Euler unstable vortex distributions can experience a process of “collisionless” (correlationless) violent relaxation towards a non-Boltzmannian quasistationary state (QSS) on a very short timescale of the order of a few dynamical times. This QSS is possibly described by the Miller–Robert–Sommeria (MRS) statistical theory which is the counterpart, in the context of two-dimensional hydrodynamics, of the Lynden-Bell statistical theory of violent relaxation in stellar dynamics.

Suggested Citation

  • Chavanis, Pierre-Henri, 2012. "Kinetic theory of Onsager’s vortices in two-dimensional hydrodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3657-3679.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:14:p:3657-3679
    DOI: 10.1016/j.physa.2012.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112001306
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suryanarayanan, S. & Narasimha, R., 2020. "On the statistical evolution of viscous vortex-gas free shear layers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:14:p:3657-3679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.